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8
Molecular dynamics simulations

8.1 Introduction

In the previous chapter we saw that the experimental valtipbysical quantities
of a many-particle system can be found as an ensemble aveEgeerimental
systems are so large that it is impossible to determine tiserable average by
summing over all the accessible states in a computer. Thésteassentially two
methods for determining these physical quantities asstitati averages over a
restricted set of states: the molecular dynamics (MD) andhteldCarlo (MC)
methods. Imagine that we have a random sample of, sdycdffigurations of
the system which are all compatible with the values of théesgparameters. For
such a large number we expect averages of physical quantiier the sample to
be rather close to the ensemble average. It is unfortunatgigssible to generate
such a random sample; however, we can generate a samplstoansif a large
number of configurations which are determined successiveiy each other and
are hence correlated. This is done in the molecular dynaamdsMonte Carlo
methods. The latter will be described in chapter 10.

Molecular dynamics (MD) is a widely used method for studyatassical many-
particle systems. It consists essentially of integratimg eéquations of motion of
the system numerically. It can therefore be viewed as a sitioul of the system
as it develops over a period of time. The system moves in pégaee along its
physical trajectory as determined by the equations of motidhnereas in the Monte
Carlo method, it follows a (directed) random walk. The grahtantage of the MD
method is that it not only provides a way to evaluate expecriatalues of static
physical quantities; dynamical phenomena, such as transpbeat or charge, or
relaxation of systems far from equilibrium can also be sddi

In this section we discuss the general principles of the oubde dynamics
method. In the following sections more details will be giemd special techniques
will be discussed. There exists a vast research literatarthie subject and there
are some review papers and books.

210
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Consider a collection dN classical particles in a rectangular volumgex Ly x
Ls. The particles interact with each other, and for simplicitg shall assume
that the interaction force can be written as a sum over page&®F(r), whose
magnitude depends only on the distancehetween the particle pairs and which
is directed between them (see also the previous chaptethatrcase the internal
force (i.e. the force due to interactions between the pasiicacting on particle
numberi is given as

Fi(R) = Z F(Iri —rj))fij. (8.1)

j=1N;
J#i
R denotes the position coordinatgsof all particles in the notation introduced in
Section 7.2.1R denotes the momenta);; is a unit vector directed along —r;,
pointing from particlei to particle j. In experimental situations there will be
external forces in addition to the internal ones — examplegeavitational forces
and forces due to the presence of boundaries. Neglectirsg tligces for the
moment, we can use (8.1) in the equations of motion:
dzl’i(t) Fi(R)

a2~ m (68:2)

in whichm; is the mass of particle— in this chapter we take the particles identical
unless stated otherwise. Molecular dynamics is the simoaldaéchnique in which
the equations (8.2) are solved numerically for a large ctite of particles.

The solutions of the equations of motion describe the tinm@uiion of a real
system though obviously the molecular dynamics approaappsoximate for the
following reasons.

e First of all, instead of a quantum mechanical treatment \s&iot ourselves to
a classical description for the sake of simplicity. In Cleay®, we shall describe
a method in which ideas of the density functional descnptior quantum
many-particle systems (Chapter 5) are combined with thesidal molecular
dynamics approach. The importance of the quantum effegsmdls strongly
on the particular type of system considered and on the phlyparameters
(temperature, density,...).

e The forces between the particles are not known exactly: tguamechanical
calculations from which they can be determined are subjesydtematic errors
as a result of the neglect of correlation effects, as we haea & previous
chapters. Usually these forces are given in a parametrised, fand the
parameters are determined either dy initio calculations or by fitting the
results of simulations to experimental data. There existesgs for which the
forces are known to high precision, such as systems camgisfi stars and
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galaxies at large mutual distances and at nonrelativiglocities where the
interaction is largely dominated by Newton’s gravitatibhar? force.

e Another approximation is inherent to most computer sinmohet aiming at a
description of the real world: the system sizes in such satais are much
smaller than those of experimental systems. In the limitretiee correlation
length is much smaller than the system size this does noemiaid much,
and in the opposite regime, in which the correlation lengiteeds the system
size we can use the finite size scaling methods discussedapt€&hy in order
to extrapolate results for physical quantities in the firsystem to those of
the infinite system (although second order transitions aldom studied in
molecular dynamics because of the heavy demands on corgpesources).
The finiteness of the system size is felt through the presehtiee boundary.
The convention adopted in the vast majority of molecularations is to use
periodic boundary conditions (PBC) as it is assumed thatHese boundary
conditions the behaviour of the system is most similar td tiaa system of
the same size embedded in an infinite system. In fact, witlogierboundary
conditions the system of interest is surrounded by similatesns with exactly
the same configuration of particles at any time — see FigdreTde interaction
between two particlesand j is then given by the following expression:

Feac(ri—rj)=>F ( > (8.3)

whereL , are vectors along the edges of the rectangular system vainohéhe
first sum on the right hand side is over all vectarsvith integer coefficients
ny. The forceF is directed along the line connecting particland the image
particler; — zf,zlL“np according to the convention of Eq. (8.1). Of course,
calculating terms of this infinite sum until convergence dhiaved is a time
consuming procedure and in the next section we shall contdaniques for
approximating this sum efficiently.

3
ri—rj+ > Luny
u=1

e The time average must obviously be evaluated over a finite.timFor
liquid argon, which is the most widely studied system in roalar dynamics
because simple Lennard—Jones pair forces yield resultshwdmie in very
good agreement with experiment, the typical time step usdlé numerical
integration of the equations of motion is equal to aboutf®econds, which
means that for the- 10° integration steps which can usually be carried out in a
reasonable amount of computer time, the total simulatioesgicted to about
10-° seconds. The correlation time of the system should thexdfermuch
smaller than this. There is however not only a limitationime as a result
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Figure 8.1: Periodic boundary conditions for molecularaiyics. Each particle interacts
not only with every other particle in the system but also waiffother particles in the copies
of the system. The arrows from the white particle point tortbarest copies of the other
particles in the system.

of the finite number of integration steps possible, but altabise of the finite
size of the system. This might in principle become noticealdten the particles
have travelled on average more than half the linear systeen Isut in practice
such effects occur at much longer time scales, of the ordéneafecurrence
time the time after which the system returns to the initial camigion (in
continuum mechanics, this is called tReincaté time.

e The numerical integration algorithm is not infinitely acata. This forces us
to make some optimum choice between speed and accuracyartier the
integration time step, the more inaccurate the results efsimulation. In
fact, the system will follow a trajectory in phase space Whigviates from
the trajectory the system would follow in reality. The effem the physical
gquantities as measured in the simulation is of course kktatéhis deviation in
the course of time.

We may summarise by saying that MD is — in principle — a diréctugation
of a many-particle system but we have seen that, just as withcamputational
technique in physics, MD simulations must be carried ouhwiinsiderable care.
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It is furthermore advisable to carry out reference testsystems for which exact
results exist or for which there is an extensive literatarecbmparison.

8.2 Molecular dynamics at constant energy

In the previous section we sketched the molecular dynamithad briefly for
the simplest case in which the equations of motion for a ctila of particles
are solved for forces depending on the relative positiornthefparticles only. In
that case energy and momentum are consefvadivially, the particle number
and system volume are conserved too, so the time averagéysital quantities
obtained by this type of simulation are equivalent to avesdg the microcanonical
or (NVE) ensemble. In this section we describe the microcanonidalni&thod in
more detail.

The algorithm of a standard MD simulation for studying sgsten equilibrium
is the following:

e [nitialise;
e Start simulation and let the system reach equilibrium;
e Continue simulation and store results.

We will now describe these main steps in more detalil.

Initialise: The number of particles and the form of the interaction asziied.
The temperature is usually of greater interest than thé ¢ogrgy of the system
and is therefore usually specified as an input parameter. Hale see below how
the system can be pushed toward the desired temperature.

The particles are assigned positions and momenta. If a kdnrdanes potential
is used, the positions are usually chosen as the sites of aiBifac lattice,
which is the ground state configuration of the noble gases dilgon (although
the Lennard—Jones system is hexagonal close-packed irrdbadystat®). The
fcc lattice contains four particles per unit cell, and for abic volume the
system contains thereford# particles,M = 1,2,... This is the reason why MD
simulations with Lennard—Jones interactions are oftemiezhrout with particle
numbers 108, 256, 500, 864, ...

The velocities are drawn from a Maxwell distribution withethspecified
temperature. This is done by drawing they andz velocity component for each
particle from a Gaussian distribution — for tlkecomponent of the velocity this
distribution is exd—mvz/(2kgT)]. In Section B.3 it is described how random

"The angular momentum is not conserved because of the pebodndary conditions breaking
the spherical symmetry of the interactions.
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numbers with a Gaussian distribution can be generated. r gfte@erating the
momenta, the total momentum is made equal to zero by calwgltie average
momentunp per particle, and then subtracting an amquirom all the individual
momentap;.

Start simulation and let the system reach equilibrium: The particles being
released from fcc lattice positions, the system is generadt in equilibrium and
during the initial phase of the simulation it is given the ogpnity to relax. We
now describe how the integration of the equations of motoearried out and
how the forces are evaluated. Finally we shall explain hothisinitial phase the
desired temperature is arrived at.

Numerical algorithms for molecular dynamics will be comsiell in detail in
Section 8.4. Sulffice it here to briefly mention the most widebed algorithm
which is simple and reliable at the same time — the Verletrdlyn — see also
Section A.7.1.3. The standard form of the Verlet algorittonthe integration of
the equation of motion of a single particle subject to a fdtadepending only on
the position of the particle reads

r(t+h)=2r(t) —r(t—h)+h?F[r(t)]/m (8.4)

wherer (t) is the position of the particle at tinte= nh (h is the time stepn is an
integer). From now on we choose units such that 1. The error per time step is of
orderh® and a worst case estimate for the error over a fixed time iatepntaining
many time steps is of ordé&? (see problem A.3). To start up the algorithm we need
the positions of the particles at two subsequent time sté&gswe have only the
initial (i.e. fort = 0) positions and velocity at our disposal, the positions-ath
are calculated as

h2

r(h) :r(0)+hv(0)+EF[r(t =0)] (m=1), (8.5)

with an error of ordeh?.
During the integration, the velocities can be calculated as
vty = LN == | o) (8.6)
2h

When using periodic boundary conditions in the simulatiea must check for each
particle whether it has left the simulation cell in the lagegration step. If this is
the case, the particle is translated back over a latticeowégt to keep it inside
the cell (we shall see below that this procedure facilitétescommon procedure
for evaluating the forces with periodic boundary condigpnThe velocity must
obviously be determined before such a translation!
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There exist two alternative formulations of the Verlet altfon, which are
exactly equivalent to it in exact arithmetic but which arsslsusceptible to errors
resulting from finite numerical precision in the computaritihe original version.
The first of these, thizap-frogform introduces the velocities at time steps precisely
in between those at which the positions are evaluated:

v(t+h/2) =v(t —h/2) +hF[r(t)], (8.7a)
r(t+h) =r(t)+hv(t+h/2). (8.7b)

These steps are then repeated over and over. Note that trstyalvays be applied
in the given order: the second step usés+ h/2) which is calculated in the first
step.

Another form is the so-called velocity-Verlet algorithrwvhich is also more
stable than the original Verlet form and which, via the déifomi

_r(t+h)—r(t—nh)

v(t) = 5 (8.8)

evaluates velocities and positions at the same time instanc

r(t-+h) =r(t)+hv(t) + h?F(t)/2, (8.9a)
v(t4h) = v(t) +h[F(t+h) + F(t)] /2. (8.9b)

This form is most convenient because it is very stable wigipeet to errors due to
finite precision arithmetic, and it does not require addiocalculations in order
to find the velocities. It should be noted that all formulaichave essentially the
same memory requirements. It may seem that, as this algoritedswo forces
the second step, we need two arrays for these, one contdtfingnd the other
F(t+ h). However, the following form of the algorithm is exactly éelent and
avoids the need for two force arrays:

V(t) =v(t)+hF(t)/2, (8.10a)
r(t+h) =r(t)+hvu(t), (8.10b)
v(t+h) =V(t) + hF(t+h)/2. (8.10c)

The new forceF(t + h) is calculated between the second and third step.

The force acting on particle results from the interaction forces between this
particle and all the other particles in the system — usuadly-wise interactions
are used. The calculation of the forces therefore takesatively large amount of
time as this require&’(N?) steps. A problem in the evaluation of the force arises
from the assumption of periodic boundary conditions. Thegsy that the system
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is surrounded by an infinite number of copies with exactlyshme configuration
as in Figure 8.1. A particle therefore interacts not onlyhwaach partnej in the
system cell we are considering but also with the images a@igb&y in all the copies
of the system. This means that in principle an infinite numddénteractions has
to be summed over. In many cases, the force decays rapidtydigitance, and in
that case remote particle copies will not contribute sigaiitly to the force. If the
force between the particles can safely be neglected beyepatrations of half the
linear system size, the force evaluation can be carriedfbieatly by taking into
account, for each particle in the system, only the inteoastiwith the nearest copy
of each of the remaining particles (see Figure 8.1): eachiiefsum over all the
copies is replaced by a single term! This is th@imum image conventionin
formula, for a cubic system cell the minimum image conventeads

r{}‘i”:mnin\ri—r,-JrnuLu\ (8.11)
with the same notation as in Eq. (8.3), but where the comgdenafim, assume
the values (41, provided all the particles are kept within the system, dejl
translating them back if they leave this cell. The potensalo longer analytic in
this convention, but discontinuities will obviously be mportant if the potential is
small beyond half the linear system size.

Oftenitis possible to cut the interactions off at a distange,s smaller than half
the linear system size without introducing significant esrdn that case the forces
do not have to be calculated for all pairs. However, all paitst be considered to
check whether their separation is larger thanes. In the same paper in which he
introduced the midpoint integration algorithm into MD, \é&? proposed keeping a
list of particle pairs whose separation lies within some imaxn distance sy and
updating this list at intervals of a fixed number of steps s thimber lies typically
between 10 and 20. The radiygax is taken larger thang.o and must be chosen
such that between two table updates it is unlikely for a pairim the list to come
closer tharrgyioff. If both distances are chosen carefully, the accuracy aaaire
very high and the increase in efficiency is of the order of #ofacf 10 (the typical
relative accuracy in macroscopic quantities in a MD simarats of order 104).

There exists another method for keeping track of which aieswithin a certain
distance of each other: tieked-cell methodin this method, the system is divided
up into (rectangular) cells. Each cell is characterizedtbyiriteger coordinates
IX,1Y,1Z in the grid of cells. The cell size is chosen largérah the interaction
range, about the size ofax > rcutof in the Verlet method. If we would have a list
of particles for each cell, we could simply restrict the matgions to particle pairs
in the same, or in neighbouring cells. However, as partisiideave and enter the
cells, the bookkeeping of these list becomes a bit cumbersdihis bookkeeping
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can however be done in a very efficient way by using a list ofiglarindices.

The procedure is reminiscent of the use of pointers in a tirliet. We need two
ingredients: we must have a routine which generates a sdebt¢ containing
information about which particle is in what cell, and we néedrganise the force
calculation such that it uses this information.

To be specific, let us assume that thereMre M x M cells. The patrticles are
numbered 1 througN, so each particle has a definite index. We use an integer array
called ‘Header’ which is of siz x M x M: Header(IX,lY,IZ) tells us thénighest
particle index to be found in cell IX,1Y,IZ. We also introdei@n integer array ‘Link’
which is of sizeN. The arrays Header and Link are filled in the following code:
dimension header(M,M,M), link(N)

Set Header (IX,1Y,1Z) to O
Set Link(l) to O
FOR=1,N DO
IX = int(M*x(I)/L)+1
Y = int(M*y(l)/L)+1
1Z = int(M*z(l)/L)+1
link(i) = header(1X,1Y,1Z)
header(IX,1Y,1Z) =1
END FOR

Now, Header contains the highest present in all cells. eantlore, for particle I,
Link(l) is another particlen the same cell To find all particles in cell I1X, 1Y,1Z,
we look at Header(1X,1Y,1Z) and then move down from partitke the following

by taking for the next particle the value Link(l). Using thisthe force calculation
leads to the pseudocode:

FOR all cells with indices (1X, 1Y, 1Z) DO
{Fill the list xt, yt and zt with the particles of the centralide
icnt=0;
j = Header(IX,1Y,12);
WHILE (j>0) DO
j = link(j);
icnt =icnt + 1,
xt(icnt) = x(j); yt(icnt) = y(j); zt(icnt) = z(j);
LocNum = icnt;
END WHILE
{Now, LocNum is the number of particles in the centralicell
FOR half of the neighbouring cells DO
Find particles in the same way as central cell
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and append them to the list xt, yt, zt;
END FOR
Calculate Lennard—Jones forces between all particlesicéhtral cell;
Calculate Lennard—Jones forces between particles in atersnd
neighbouring cells;
END FOR

Note that we loop over onlyalf the number of neighbouring cells in order to
avoid double counting of particle pairs. The cell methodeisl efficient than the
neighbour list method as the blocks containing possibleraation candidate for
each patrticle is substantially bigger than the spheres ehttighbour list. The
advantage of the present method lies in its suitability farallel computing — see
Chapter 16.

Cutting off the force violates energy conservation althotlge effect is small if
the cut-off radius is chosen suitably. To avoid energy comdmn violation, the
pair potentialU (r) can be shifted so that it becomes continuouscgt,s. The
shifted potential can be written in terms of the original ase

Ushirt(r) =U (r) —U (reutofr) - (8.12)

The force is not affected by this shift — it remains discomtins at the cut-off and
this gives rise to inaccuracies in the integration. Apgiyashift in the force in
addition to the shift in the potential yies°

Utorce shifr) =U (r) —U (reutoff) — %U (Feutoff) (F — cut-off) (8.13)
and now the force and the potential are continuous. Thesasstaggnts to the
potential can be compensated for by thermodynamic petiorbdaheory, see
Ref. 11.

Electric and gravitational forces decay ag Jand they cannot be truncated
beyond a finite range without introducing important errofihese systems will
be treated in Section 8.7.

The time needed to reach equilibrium depends on how far tti@l iconfiguration
was from equilibrium, and on the relaxation time (see Secliol). To check
whether equilibrium has been reached, it is best to monieweral physical
quantities such as kinetic energy, pressure, etc., and lsether they have levelled
down. This can be judged after completing the simulationlbttipg out the values
of these physical quantities as a function of time. It is ¢fieme convenient to save
all these values on disk during the simulation and analyserdlults afterwards.
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It is also possible to measure correlation times along thesliof Section 7.4, and
let the system relax for a period of, for example, twice thrgkest correlation time
measured.

A complication is that we want to study the system at a preddfiemperature
rather than at a predefined total energy because tempersteasily measurable
and controllable in experimental situations. Unfortuhatere can hardly foresee
from the initial configuration at which temperature the syswill end up. To arrive
at the desired value of the temperature, we rescale theitietoof the particles a
number of times during the equilibration phase with a umifacaling factorA
according to

Vi(t) — Avi(t) (8.14)

for all the particles = 1,...,N. The scaling factoA is chosen such as to arrive at
the desired temperatufigy after rescaling:

(N—1)3kgTp

A= .
S, me?

(8.15)

Note the factorN — 1 in the numerator of the square root: the kinetic energy
is composed of the kinetic energies associated withirtdependentvelocities,
but as for inter-particle interactions with PBC the totatct® vanishes, the total
momentum is conserved and hence the number of independeaityeomponents
is reduced by 3. This argument is rather heuristic and natedntorrect. We shall
give a more rigorous treatment of the temperature calcuiati Section 10.7.

After a rescaling the temperature of the system will drifagmMout this drift will
become less and less important when the system approachiibriaon. After
a number of rescalings, the temperature then fluctuatesh@rao equilibrium
value. Now the ‘production phase’, during which data can Xieaeted from the
simulation, begins.

Continue simulation and determine physical quantities: Integration of the
equations of motion proceeds as described above. In thisopéne simulation,
the actual determination of the static and dynamic physjoahtities takes place.
We determine the expectation value of a static physical tifjyaas a time average
according to

l n

n—no &,

The indicesv label then time steps of the numerical integration, and the figst
steps have been carried out during the equilibration. Faraenation of errors in
the measured physical quantities, see the discussion tio8&c4.
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Difficulties in the determination of physical quantities ynarise when the
parameters are such that the system is close to a first or demaier phase
transition (see the previous chapter): in the first ordeecti®e system might be
‘trapped’ in a metastable state and in the second order taseorrelation time
might diverge for large system sizes.

In the previous chapter we have already considered someeafjuhntities of
interest. In the case of a microcanonical simulation, weuawally interested
in the temperature and pressure. Determination of thesetitjga enables us to
determine the=quation of statea relation between pressure and temperature, and
the system parameters — particle number, volume and elisilg). This relation
is hard to establish analytically, although various appnate analytical techniques
for this purpose exist: cluster expansions, Percus-Yeymigkoximation, etceters.

The pair correlation function is useful not only for studyithe details of the
system but also to obtain accurate values for the macrospygictities such as the
potential energy and pressure, as we shall see below. Thelatwn function is
determined by keeping a histogram which contains for evegrval[iAr, (i + 1)Ar]
the number of paira(r) with separation within that range. The list can be updated
when the pair list for the force evaluation is updated. Theetation function is
found in terms ofh(r) as

A (n(r))
or) = N(N—1) {4m2Ar] ' (8.17)

Similar expressions can be found for time-dependent airoel functions — see
refs. 2 and 11.

If the force has been cut off during the simulation, the daliton of average
values involving the potentidl requires some care. Consider for example the
potential energy itself. This is calculated at each stemtpknly the pairs with
separation within the minimum cut-off distance into acdodtaking all pairs into
account would imply losing the efficiency gained by cuttirijtbe potential. The
neglect of the tail of the potential can be corrected for bipaithe pair correlation
function beyond ¢yoff:

V) = Wawart 22 [© arumgn ©19)

cut-off

where (- --) .o IS the average restricted to pairs with separation smélian t
reutoff. Of course, we can determine the correlation functionrfap to half the
linear system size only because of periodic boundary condit Verlet? has used
the Percus-Yevick approximation to extrapolgt®eyond this range. Ofteg is
simply approximated by its asymptotic valge) = 1 for larger.
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Similarly, the virial equation is corrected for the potahtail:

g(r)dr,
(8.19)

P 1 JdU(R) 2N [© 30U(r)
eT L 3NkgT <ZJ;“J ar) > . FeTV s 0T
whereg(r) can also be replaced by 1.

The specific heat can be calculated from Lebowitz’ formude, Eq. (7.37).

8.3 A molecular dynamics simulation program for argon

In the previous section we described the structure of a Mynara and here
we give some further details related to the actual impleatemt. The program
simulates the behaviour of argon. In 1964, Rahtgpublished a paper on
the properties of liquid argon — the first MD simulation inviolg particles with
smoothly varying potentials. Previous work by Alder and Waight'* was on
hard sphere fluids. Rahman’s work was later refined and estehy Verlet who
introduced several features which are still used to dataveadave seen in the
previous section.
The Lennard—Jones pair potential turns out to give exdetsults for argon:

U(r) = 4e [(9)12— (9)6] . (8.20)

r r

The optimal values for the parametegsand o are €¢/kg = 1198 K and o =
3.405A respectively.

In the initialisation routine, the positions of an fcc laetiare generated. For an
L x L x L system containing M2 particles, the fcc lattice constaatis a = L/M.
It may be safe to put the particles not exactly on the bountiargts of the system
because as a result of rounding errors it might not alwaysldser gvhether they
belong to the system under consideration or a neighbounpgy. c

The procedure in Section B.3 for generating random numbélsavGaussian
distribution should be used in order to generate momentardicg to a Maxwell
distribution. First generate all the momenta with someteaty distribution width.
Then calculate the total momentyp; and subtract a momentup= pyot/N from
each of the momenta in order to make the total momentum zeow: tNe kinetic
energy is calculated and then all momenta are rescaled it@ @t the desired
kinetic energy.

When calculating the forces, the minimum image conventiamukl be adopted.
It is advisable to start without using a neighbour list. Hoe minimum image
convention it should be checked for each paitj) whether the difference of the
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X-components; — X is larger or smaller thah/2 in absolute value. If it is larger,
then an amourit should be added to or subtracted from this difference tetoam

it to a value which is smaller thah/2 (in absolute value). In many codes, this
translation is implemented as follows:

X — X— [x/L]*L, (8.21)

where[] denotes the integer part. This procedure is then repeatatidy andz
component. Potential and force may be adjusted accordiBgs¢8.12) and (8.13).

The equations of motion are solved using the leap-frog ovébecity form of
the Verlet algorithm. A good value for the time step is 39s which in units of
(mo?/)Y/2 is equal to about 004. Using the argon mass as the unit of mass,
as the unit of distance ard= (ma?/¢)Y/2 as the unit of time, th&-component of
the force acting on particleresulting from the interaction with particlgis given
by

R = (x —x;) (48— 24r;®) (8.22)

with similar expressions for thg andz components.

After each step in the Verlet/leap-frog algorithm, eachipkershould be checked
to see whether it has left the volume. If this is the case,atighbe translated over
a distancetL along one or more of the Cartesian axes in order to bring k bdo
the system in accordance with the periodic boundary canditi

During equilibration, the velocities (momenta) should lescaled at regular
intervals. The user might specify the duration of this pteasgthe interval between
momentum rescalings.

During the production phase, the following quantities dtidae stored in a file
at each time step: the kinetic energy, potential energyjlaadirial

ZrijF(rij). (8.23)
]

Furthermore, the program should keep a histogram-arrataicng the numbers
of pairs found with a separation betweeandr + A for, sayA = L /200 from which
in the end the correlation function can be read off.

— Programming exercise —

Write a program which simulates the behaviour of a Lennandesd liquid with the
proper argon parameters given above.

Checkl To check the program, you can use small particle numbech asi
32 or 108. Check whether the program is time-reversible bggmating for



224 Molecular dynamics simulations

Table 8.1: Molecular dynamics data for thermodynamic qtiastof the Lennard—Jones
liquid. Tp is the desired temperaturd; is the temperature as determined from the
simulation;p is the densityp = N/V. All values are in reduced units.

p(1/0%) To(e/ks) T BP/p U(e)
0.88 10 0.990(2) 2.982)  -5.7041)
0.80 10 1.010(2) 131(2)  -5.2711)
0.70 10 1.014(2) 1.06(4)(5) -4.6621)

some time (without rescaling) and then reversing velaitiehe system should
then return to its initial configuration (graphical displafythe system might be
helpful).

Check2 The definite check is to compare your results for argon viindture.

A good value for the equilibration time is 10tGand rescalings could take place
after every 10 or 20 time steps. A sufficiently long simulatiome to obtain
accurate results is 20.0 (remember the time step is 0.0@4. In table 8.1
you can find a few values for the potential energy and pressurdifferent
temperatures. Note that the average temperature in youtation will not be
precisely equal to the desired value. In Figure 7.1, theqmielation function
for p =N/V =1.06 andT = 0.827 is shown.

It is interesting to study the specific heat [Eq. (7.37)] ia #olid and in the gas
phase. You may compare the behaviour with that of an idealogas 3kg /T per
particle, and for a harmonic solid, = 3kg T per particle (this is the Dulong—Petit
law).

Note that phase transitions are difficult to locate, as tieeestrong hysteresis
in the physical quantities there. It is however interestiagobtain information
about the different phases. Fbr= 1, p = 0.8 the argon Lennard—Jones system is
found in the liquid phase, and fgr= 1.2 andT = 0.5 in the solid phase. The gas
phase is found for example wiih = 0.3 and andT = 3.0. It is very instructive
to plot the correlation function for the three phases andaixphow they look.
Another interesting exercise is to calculate the diffusiamstant by plotting the
displacement as a function of time averaged over all padicFor times smaller
than the typical collision time (time of free flight), you shd find

(X% ~ 12, (8.24)
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and this crosses over to diffusive behaviour
(x*) =Dt, (8.25)

with D the diffusion constant. In the solid phase, the diffusionstant is 0. In the
gas phase, the diffusive behaviour sets in at later timasiththe fluid.

If the program works properly, keeping a Verlet neighbosirdis discussed in the
previous section can be implemented. Vérletedr .o = 2.50 andrmax= 3.30.
A more detailed analysis of the increase in efficiency forows values of a1 With
lout-off = 2.50 shows thatmax = 3.00 with updating the neighbour list once every
25 integration steps is indeed most efficiért

— Programming exercise —

Implement the neighbourlist in your program and check wéetihe results remain
essentially the same. Determine the increase in efficiency.

8.4 Integration methods — symplectic integrators

There exist many algorithms for integrating ordinary diffietial equations, and a
few of these are described in Appendix A. In this section, arsider the particular
case of numerically integrating the equations of motiondatynamical system
described by a time-independent Hamiltonian, of which thegical many-particle
system at constant energy is an example. Throughout thi®sege consider the
equation of motion for a single particle in one dimensione-discussion is easily
generalised to more particles in more dimensions.

The Verlet algorithm is the most popular algorithm for melee dynamics and
we shall consider it in more detail in the next subsectionfoRedoing so, we
describe a few criteria which were formulated by Berendseh\é@an Gunstere
for integration methods for molecular dynamics. First df alccuracyis an
important criterion: it tells to which power of the time stepmerical trajectory
will deviate from the exact one after one integration steg® (also Appendix A).
Note that the prefactor of this may diverge if the algorittsrunstable (e.g. close
to a singularity of the trajectory). The accuracy is theeriiin which is usually
considered in numerical analysis in connection with irdégn methods.

Two further criteria are related to the behaviour of the gpeand other
conserved quantities of a mechanical system which areetekat symmetries of
the interactions. Along the exact trajectory, energy isseoved as a result of the
time-translation invariance of the Hamiltonian, but theergy of the numerical
trajectory will deviate from the initial value and this datibn can be characterised
by its drift, a steady increase or decrease, andnibise fluctuations on top of
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the drift. Drift is obviously most undesirable. In microgamcal MD we want
to sample the points in phase space with a given energy; theisés form a
hypersurface in phase space — the so-catlieergy surface If the system drifts
away steadily from this plane it is obviously not in equiitbn.

It is very important to distinguish in all these cases betwego sources of
error: those resulting from the numerical integration rodtls opposed to those
resulting from finite precision arithmetic, inherent to quuters. For example, we
shall see below that the Verlet algorithm is not susceptiblenergy-drift in exact
arithmetic. Drift will however occur in practice as a resaoftfinite precision of
computer arithmetic, and although different formulatiaighe Verlet algorithm
have different susceptibility to this kind of drift, this plends also on the particular
way in which numbers are rounded off in the computer.

Recently, there has been much interest symplectic integratots After
considering the Verlet algorithm in some detail, we shaialibe the concept of
symplecticity and its relevance to numerical integration methods.

8.4.1 The Verlet algorithm revisited

8.4.1.1 Properties of the Verlet algorithm

In this section we treat the Verlet algorithm
X(t+h) = 2x(t) — x(t — h) + h?F ()] (8.26)

in more detail with emphasis on issues which are relevant@o Mderivation of
this algorithm can be found in Section A.7.1.3. The error ipgggration step is
of the orderh®. Note that we take the mass of the particle(s) involved etpial
Unless stated otherwise, we analyse the one-dimensiorgiegparticle version of
the algorithm. The momenta are usually determined as

p(t) = [x(t+h) —x(t —h)]/(2h) + O(h?). (8.27)

Note that there is no need for a more accurate formula, asctheraulated error in
the positions after many steps is also of orderWe shall check this below, using
also a more accurate expression for the moméhta:

p(t) = [X(t+h) —x(t—h)]/(2h) — 1£2 {Fx(t+h)] —Fxt—h)]}+o(h%). (8.28)

This form can be derived by subtracting the Taylor exparssin x(t 4+ h) and
X(t —h) aboutt, and approximatinglF [x(t)] /dt by {F[x(t + h)] — F[x(t — h)]} /h.

TSome authors use the term ‘symplecticness’ instead of ‘Betipity’.
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Figure 8.2: The energy of the harmonic oscillator determhinging the various velocity
estimators described in the teX; is the energy using (8.29%, uses (8.27) anéz was
calculated using (8.28).

In the leap-frog version, we have the velocities at our digpéor times halfway
between those at which the positions are given:

p(t+h/2) = [x(t+h) —x(t)]/h+ G(h?). (8.29)

Each of the expressions (8.27-8.29) for the momentum gigesto a different
expression for the energy.

We first analyse the different ways of calculating the totedrgy for the simple
case of the one-dimensional harmonic oscillator

H = (PP +x%) /2 (8.30)

and we can use either of the formulae (8.27-8.29) for the mtume In Figure 8.2
the different energy estimators are shown as a functionnuod fior the harmonic
oscillator which is integrated using the Verlet algorithrthaa time stegh = 0.3 —
this is to be compared with the peridd= 2 of the motionx(t) = cogt) (for
appropriate initial conditions). It is seen that the leeggfenergy estimator is an
order of magnitude worse than the other two. This is not sing, since the fact
that the velocity is not calculated at the same time instastthe positions results
in deviation of the energy from the continuum value of ordénstead oh? when
using (8.27). The energy estimator using third order momantording to (8.28)
is better than the second order form. Note that the erroramptsition accumulates
in time to give 0 (h?) (see problem A.3), so that there is no point in calculating
the momenta with a higher order of accuracy, as this will netdyan order of
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magnitude improvement. The fact that the error for the tlirder estimator is
about a factor of 3 better than that of the second order onehrharmonic
oscillator does therefore not indicate a systematic trelghre importantly, the
error in both estimators (8.27) and (8.28) scales indeedi@as|In the following

we determine momenta according to Eq. (8.27). In the leag-frersion the
momentum estimator is

p(t) = [p(t +h/2) + p(t —h/2)] /24 O(h?). (8.31)

The results for the various energy estimators can be olatdiyesolving the
harmonic oscillator in the Verlet algorithm analyticallyThe ‘Verlet harmonic
oscillator’ reads

X(t+h) = 2x(t) — x(t —h) — h>(t). (8.32)

If we substitutex(t) = exp(iwt) into the last equation, we obtain
cogwh) =1—h?/2 (8.33)

and this defines a frequenay differing an amount of orden? from the angular
frequencyw = 1 of the exact solution. The difference between the numieaica
the exact solution will therefore show a slow beat.

A striking property of the energy determined from the Véleatp-frog solution
is that it does not show any drift in the total energy (in exadthmetic). This
stability follows directly from the fact that the Verlet algthm is time-reversible,
which excludes steady increase or decrease of the energyefardic motion.
In a molecular dynamics simulation, however, the integratime, which is the
duration of the simulation, is much smaller than the peribthe system, which
is the Poinca time that is the time after which the system returns to its stgrti
configuration. The error in the energy might therefore grésadily during the
simulation. It turns out, however, that the deviation of émergy remains bounded
in this case also, as the Verlet algorithm possesses anamdisymmetry, called
symplecticity Symplecticity will be described in detail in Section 8.4.Rlere
we briefly describe what the consequences of symplecticéyfa an integration
algorithm. Symplecticity gives rise to conserved quagditiand in particular, it can
be showr’ that a discrete analogue of the total energy is rigoroushseoved (in
exact arithmetic). It turns out that this discrete energyiates from the continuum
energy at most an amount of orde, for some positive integet. Therefore, the
energy cannot drift away arbitrarily and it follows that th@ise remains bounded.

To illustrate this point we return to the harmonic oscillatdn this particular
case we can actually determine the conserved discreteyentrghe leap-frog



8.4. Integration methods — symplectic integrators 229

formulation:
p(t+h/2) = p(t —h/2) — hx(t); (8.34a)
X(t+h) =x(t) +hp(t +h/2), (8.34b)
itis equal td®
o — % [Pt —h/2)2 1+ X(t)% — hp(t — h/2)x(1)] (8.35)

The fact that this quantity is conserved can also be checkedtly using (8.34b).
This energy is equal to /2 — h?/8 for the solutioncogwt) with w given in
Eqg. (8.33). For general potentials, the discrete energgtikmown.

As mentioned before, the absence of drift in the energy inddee of the
harmonic oscillator can be explained by the time-reveisibiof the Verlet
algorithm, and comparisons with Runge-Kutta integratans éxample, which
are in general not time-reversible for potentials such ash@wrmonic oscillator
do not demonstrate the necessity for using a symplectiaittigo convincingly.
Symplecticity does however impose a restriction on theediat time-reversibility
does not.

Symplectic integrators are generally recommended fogmateng dynamical
systems because they generate solutions with the same teopreperties in
phase space as the solutions of the continuum dynamicamysthe fact that
the deviation of the energy is always bounded is a pleasapiepty of symplectic
integrators. Symplectic integrators are considered irendetail in Section 8.4.2.

Finite precision of computer arithmetic obviously doesnmespect the symplectic
geometry in phase space. Hockney and Eastwbolserved that when numbers
are rounded off properly in the computer, the system tende#d up because the
rounding effects can be viewed as small random forces aotintpe particles. If
real numbers are systematically truncated to finite pracisumbers, the system
cools down slowly. Both effects are clearly signs of nonskaaiic behaviour.

Several classes of symplectic integrators with explicitmfolas for different
orders of accuracy have been found. Runge—Kutta— Nystrdagrators (not
to be confused with ordinary Runge—Kutta algorithms) haeerbstudied by
Okunbor and Skeef Yoshid&! and Foresf have considered Lie-integrators.
Their approach follows rather naturally from the structafethe symplectic
group, as we shall see in Section 8.4.2.

TGear algorithm¥ 2324 have been fashionable for MD simulations. These are prdict
corrector algorithms requiring only one force evaluatia@r ime step. Gear algorithms are not
symplectic and they are becoming less popular for that reaso
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Let us make an inventory of relevant symmetry properties miégrators.
First of all, time-reversibility is important. If it is prest in the equations of
motion, as is usually the case in MD, it is natural to requirm ithe integration
method. Another symmetry is phase space conservation. i§ksproperty of
the trajectories of the continuum equations of motion — fin@perty is given by
Liouville’s theorem — and it is useful to have our numeriaaljéctories obeying
this condition too (note that time-reversibility by itselbes not guarantee phase
space conservation). The most detailed symmetry requitemesymplecticity,
which will be considered in greater detail below (SectiohB). This incorporates
phase space conservation and conservation of a number sérved quantities,
the so-calledPoincag invariants The symplectic symmetry properties can also
be formulated in geometrical terms as we shall see below. tMoportant
for molecular dynamics is the property that the total endtggtuates within
a narrow range around the exact one. Some comparison hascheéd out
between nonsymplectic phase space conserving and syinphgegrators’®> and
this gave no indication of the superiority of symplecticegpators above merely
phase-space conserving ones. As symplectic integrateraarmore expensive
to use than nonsymplectic time-reversible ones, their sisedommended as the
safest option. Investigating the merits of the varioussdasf integration methods
for microcanonical molecular dynamics is a fruitful areafitture research.

8.4.1.2 Frictional forces

Later we shall encounter extensions of the standard MD rdetfteere a frictional
force is acting on the particles along the direction of théocsiy. The Verlet
algorithm can be generalised to include such frictionatdsrand we describe this
extension for the one-dimensional case which can easilyelberglised to more
dimensions. The continuum equation of motion is

% =F(X) — yX, (8.36)

and expanding(h) andx(—h) aroundt = 0 in the usual way (see Section A.7.1.3)
gives

x(h) = x(0) + hx(0) + h?[—yx(0) + F (0)] /2+ h*X(0) /6 + 0'(h*)  (8.37a)
x(0) — hx(0) + h?[—yX(0) + F (0)] /2— h®%(0)/6+ ¢(h*).  (8.37h)

Addition then leads to

x(h) = 2x(0) — x(—h) + h? [—yx(0) + F (0)] + &/(h*) (8.38)
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wherex(0) remains to be evaluated. If we write
X(0) = [x(h) —=x(—h)] /(2h) + O(1?), (8.39)
and substitute this into (8.38), we obtain
(1+ yh/2)x(h) = 2x(0) — (1 — yh/2)x(—h) + h?F (0) + &'(h%). (8.40)

A leap-frog version of the same algorithm is

x(h) = x(0) + hp(h/2); (8.41a)
p(h/2) = -/ 2)1;34(:‘/:;;) +hF(0) (8.41b)

If the massmis not equal to unity, the factorstlyh/2 are replaced by-t yh/(2m).

It is often useful to simulate the system with a prescribadperature rather
than at constant energy. In section 8.5 we shall discussstiarrtemperature MD
method in which a time-dependent friction parameter ogalyeying a first order
differential equation:

%(t) = —y(OX(t) + F[x()] (8.42a)
y(t) = g[x(t)]. (8.42Db)

The solution can conveniently be presented in the leap{fibogulation. As the
momentum is given at half-integer time steps in this forraoka we can solve for
yin the following way:

v(h) = y(0) +hg[p(h/2)] + &(h?), (8.43)

and this is to be combined with Egs. (8.41). Velocity-Velffietmulations [EQs.
(8.9)] for equations of motions including friction terms ncabe found
straightforwardly. This is left as an exercise to the readsee also Ref. 26.

*8.4.2 Symplectic geometry — symplectic integrators

In recent years, major improvement has been achieved inrstadeing the
merits of the various methods for integrating equations aftiom which can
be derived from a Hamiltonian. This development startedhm early eighties
with the observations made independently by Rlt#nd Fené® that methods
for solving Hamiltonian equations of motion should presethie geometrical
structure of the continuum solution in phase space. Thisngtwy is the so-called
symplectic geometryBelow we shall explain what this geometry is about, and
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what the properties of symplectic integrators are. In $ac8.4.3 we shall see
how symplectic integrators can be constructed. We restricselves again to
a two-dimensional phase space (one particle moving in omermsion) spanned
by the coordinatep andx, but it should be realised that the analysis is trivially
generalised to arbitrary numbers of particles in higheresisional space with
phase space points,...,pm,r1,....fm).” The equations of motion for the
particle are derived from a Hamiltonian which for a particieving in a potential
(in the absence of constraints) reads
p?
H(p,X) = ?%—V(x). (8.44)

The Hamilton equations of motion are then given as

. 07(p,x)

p= o (8.45a)
. 0(p,X)

X= “op (8.45b)

It is convenient to introduce the combined momentum-pasittoordinatez =
(p,X), in terms of which the equations of motion read

2= J0#(2) (8.46)

0 -1
J:(l 0) (8.47)

and.7(z) = (0.4(2)/0p, 0.5 (2) | 0X) .}
Expanding the equation of motion (8.46) to first order, weaobtthe time
evolution of the pointzto a new point in phase space:

wherel is the matrix

Z(t+h) = z(t) + hd0,o2[z(t)]. (8.49)
The exact solution of the equations of motion can formallyvoigten as

Z(t) = exp(td0,72)[z(0)] (8.50)

TAlthough we use the notatian for the coordinates, they may be generalised coordinates.
*In more than one dimension, the vecixs defined agpi,.-., PNy X1, - - -, XN), @and the matrixd

reads in that case
0 -l
() .49

wherel is theN x N unit matrix.
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where the exponent is to be read as a series expansion of énatapJ, 7.
This can be verified by substituting Eqg. (8.50) into (8.4@)islis a one-parameter
family of mappings with the time as the continuous parameter. The first order
approximation to (8.50) coincides with (8.49).

Now consider a small region in phase space located=atp, x) and spanned by
the infinitesimal vectordz* and 52°. The areadA of this region can be evaluated
as the cross product & and32° which can be rewritten &s

OA =07 x 62 = 372 (362). (8.51)

It is now easy to see that the mapping (8.50) preserves thedédrelt is sufficient
to show that its time derivative vanishes fot 0, as for later times the analysis can
be translated to this case. We have

doA

R

90,52 (362) +(82) - |390,(52) | (852)
We can finds# (622P) using a first order Taylor expansion:
H(8F) = H(2+ 6F) — A (2) = 62 - 0. (2), (8.53)
and similar for.#(62°). This leads to the form

doA
dt

——(T67) (352) - (87) - (L7562 (8.54)

t=0

whereL is the Jacobian matrix of the operattid,.77:

~Hox — M > . (8.55)

Lij = ZJik (0% (2) | 0z0z] = ( Sp  Hx

Here .74y denotes the second partial derivative with respegtdtretera. It is easy
to see that the matrik satisfies

LTI4+JL=0, (8.56)

whereLT is the transpose of, and hence from (8.54) the aré¥ is indeed
conserved.

TNote that the area can be negative: it issientedarea. In the language of differential geometry
this area is called awo-form
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P

Figure 8.3: The area conservation law for a symplectic flohe iiitegralf pdxfor any loop
around the tube representing the flow of a closed loop irptlxgplane remains constant.
This integral represents the area of the projection of the lnto thexp plane. Note that
the loops do not necessarily lie on a plane of constant time.

We can now define symplecticity in mathematical terms. The@iamatrixS of
the mapping ex@tJOH) is given asS= exp(tL). This matrix satisfies the relation:

SJs=J. (8.57)

Matrices satisfying this requirement are cal®danplectic They form a Lie group
whose Lie algebra is formed by the matridesatisfying (8.56). General nonlinear
operators are symplectic if their Jacobi matrix is symject

In more than two dimensions the above analysis can be gesestdbrany pair
of canonical variableg;, X — we say that phase space area is conserved for any
pair of one-dimensional conjugate variablgsx. The conservation law can be
formulated in an integral forr®® this is depicted in Figure 8.3. In this picture the
three axes correspond [ x andt. If we consider the time evolution of the points
lying on a closed loop in the, X plane, we obtain a tube which represents the flow
in phase space. The area conservation theorem sayariylaiop around the tube
encloses the same arg¢gdx In fact, there exists a similar conservation law for
volumes enclosed by the areas of pairs of canonical vagabtbese volumes are
called thePoincat invariants For the particular case of the volume enclosed by
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areas ofall the pairs of canonical variables, we recover Liouville'sdrem which
says that the volume in phase space is conserved. Phase/epane conservation

is equivalent to the Jacobi determinant of the time evotutiperator in phase space
being equal to 1 (or-1 if the orientation is not preserved). For two-dimensional
matrices, the Jacobi determinant being equal to 1 is equivdab symplecticity
as can easily be checked from (8.57). This is also obvious filte geometric
representation in Figure 8.3. For systems with a higheredsional phase space,
however, the symplectic symmetry is a more detailed remerd than mere phase
space conservation.

We have seen that symplecticity is a symmetry of Hamiltomagchanics in
continuum time; now we consider numerical integration radthfor Hamiltonian
systems (discrete time). As mentioned above, it is not clehether full
symplecticity is necessary for a reliable description @& ttynamics of a system
by a numerical integration. However, it will be clear tha¢ fbreservation of the
symmetries present in continuum time mechanics is the netiabte option. The
fact mentioned above that symplecticity implies conséowadf the discrete version
of the total energy is an additional feature in favour of sigufic integrators for
studying dynamical systems.

It should be noted that symplecticity does not guarantee tiaversibility or
vice versa. Time reversibility shows up as the Hamiltoniamg invariant when
replacingp by —p, and a Hamiltonian containing odd powerspmight still be
symplectic.

*8.4.3 Derivation of symplectic integrators

The first symplectic integrators were found by requiring traintegrator of some
particular form be symplectic. The complexity of the resigitalgebraic equations
for the parameters in the integration scheme was found tease dramatically
with increasing order of the integrator. Later YosHitland Foresf developed a
different scheme for finding symplectic integrators, andhis section we follow
their analysis.

Consider a Hamiltonian of the simple form:

H=T(p)+U(x) (8.58)

(we still restrict ourselves to a particle in one dimensiomesults are easily
generalised). In terms of the varialde- (p,x) the equations of motion read

dz ([ 9s¢ o\ [ dU(x) dT(p)\ _
a_<_ax’ap>_<_ ax’ap>_
JO#(2=T(2)+U(2), (8.59)
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where in the last expression the operaidk7’, which acts orz = (p,x), is split
into the contributions from the kinetic and potential elyargspectively:

T(2 = ( ,a;—(pp)> (8.60a)
U2 = (— aL(J?Er)’()) . (8.60D)

T andU are therefore also operators which map a poiat(p,x) in phase space
onto another point in phase space.
As we have seen in the previous section, the exact soluti¢®.B®) is given as

z(t) = exp(tJOH)[z(0)] = explt(T +U)][z(0)]. (8.61)

The term exptJOH ) is a time evolution operator. It is a symplectic operatoares
exp(tT) and extU ) since these can both be derived from a Hamiltonian (for a free
particle and a particle with infinite mass respectively).

An n-th order integratorfor time steph is now defined by a set of numbeag by,
k=1, ...,m, such that

ﬁ exp(aghT) exp(bkhU) = exp(hJOH) + &/(h"1). (8.62)
k=1

Since the operators efghT) and exgbchU) are symplectic, the integrator
(8.62) is symplectic too. The difference between the irgemyrand the exact
evolution operator can be expressed in Campbell-Bakersddianff (CBH)
commutators: i£° = e*e® then

C=A+B+[A B]/2+ ([A [AB] +[B,[B,A])/12+ - (8.63)

where the dots represent higher order commutators. Thisudlarcan be derived by
writing exp(tA) exp(tB) = expt(A+ B) 4 A], expanding the operatdy in powers
of t and equating equal powerstobn the left and right hand sides of the equality
— see Ref. 30. Applying this formula with= hT andB = hU to increasing orders
of commutators, we find

exp(hJOH) = exp(hT) exp(hJ) 4+ &(h?) (8.64a)
exp(hJOH) = exp(hT /2) exp(hU) exp(hT /2) + ¢'(h®) (8.64b)
etc,

but the extra terms are often tedious to find. AandU appear in the exponent,
these expressions do not seem very useful. However, adawidirectly from
Eg. (8.60) that applyind andU more than once gives zero, we have simply

exp(ahT) = 1+ ahT (8.65)
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and similarly for exgbhU). Therefore, the first order integrator is

p(t-+h) = p(t) —h{0U [x(t)]/dx} (8.66a)
X(t+h) =x(t)+h{aT[p(t+h)]/dp} (8.66h)
which is recognised as the Verlet algorithm (though withss laccurate definition

of the momentum).
The second order integrator is given by

p(t+h/2) = p(t) —h{aU x(t)]/ox} /2; (8.67a)
X(t-+h) =xt)+h{aT[p(t+h/2)]/dp}; (8.67b)
p(t+h) = p(t+h/2) —h{dU [x(t + h)]/x} /2. (8.67c)

Applying this algorithm successively, the first and thirdpstan be merged into
one, and we obtain precisely the Verlet algorithm in leaqgfform with a third
order error in the time step. This error seems puzzling since we know that the
Verlet algorithm gives positions with an error of ord#r and momenta with an
orderh? error. The solution to this paradox lies in the interpretatdf the variable
p. If at timet, p(t) is the continuous time derivative of the continuum solution
X(t), the above algorithm gives ugt + h) and p(t + h) both with errorh®. If
howeverp(t) is defined asgx(t + h) — x(t — h)] /(2h), the algorithm is equivalent to
the velocity-Verlet algorithm and hence gives the posgix(t+ h) with an error of
orderh* and p(t + h) is according to its definition given with & error. The way
in which initial conditions are given define which case weiare

Finding higher order algorithms is nontrivial as we do nobwrthe form of the
higher order expansion terms of the operators(lgkp and exghU). However,
Yoshid&?! proposed writing the fourth order integrator in the follogyiform:

S(ah)S(Bh)S(ah) (8.68)

where$; is the second order integrator, and he fixednd 3 by the requirement
that the resulting expression is equal to the continuumaipeto fourth order.
Higher order integrators were found similarly. The genegalilt can be written as
fork=1tondo
XM = x*Y _hadT[p*Yap (8.69)
p = pk=b _hpau [x®)ax
end
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and the numberay andby can be found in Yoshida’s paper. For the fourth order
case, they read

ag=as=1/[22-23)]; ay=ag=(1-2"%y (8.70a)
by =bs =2a; by=-23p1; by=0. (8.70b)

From Yoshida’s derivation it follows that there exists aserved quantity which
acts as the analog of the energy. The integrator is certaioiythe same as the
exact time evolution operator, but it deviates from theeladnly by a small amount.
Writing the integratoiS(h) as

S(h) = exp(hAp) (8.71)

we have a new operatd@p which deviates from the continuum operagoonly by

an amount of orden""?, as the difference can be written as a sum of higher order
CBH commutators. It will be shown in problem 8.5 that for arigior of the form
exp(tAp) which is symplectic for alt, there exists a Hamiltonias¢p which is the
analogue of the Hamiltonian in the continuum time evolutidihis means that, if
we know.s7p (which is usually impossible to find, except for the trivialse of the
harmonic oscillator), we could either use the integrator {Bto give us the image

at timeh, or the continuum solution of the dynamical system with Heamian 575

for t = h: both mappings would give identical results. The Hamilkoni?p(z) is
therefore a conserved quantity of the integrator, andfiediffrom the energy by an
amount of ordeh™ . The existence of such a conserved quantity is also disgusse
inrefs. 17, 18 and 31.

8.5 Molecular dynamics methods for different ensembles

8.5.1 Constant temperature

In experimental situations the total energy is often notratrd variable as usually
the temperature of the system is kept constant. We knowrhheiinfinite system
the temperature is proportional to the average kineticggneer degree of freedom
with proportionality constankg/2, and therefore this quantity is used in MD to
calculate the temperature, even though the system is fggt $ection 10.7 for a
discussion on temperature for a finite system). As the toiigy remains constant
in the straightforward implementation of the molecular ayrncs paradigm as
presented in the previous sections, the question arisesA@wan perform MD
simulations at constant temperature or pressure. We stdrtanbrief overview
of the various techniques which have been developed forikgepe temperature
constant. Then we shall discuss the most succesful one,dbe-Noover method,
in greater detalil.
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8.5.1.1 Overview of constant temperature methods

Experience from real life is a useful guide to understanccgdares for keeping
the temperature at a constant value. In real systems, theetatore is usually
kept constant by letting the system under consideratiohan@e heat with a much
larger system in equilibrium — the heat bath. The latter hdsfaite temperature
(it is in equilibrium) and the smaller system which we coesiavill assume the
same temperature, as it has a negligible influence on théohtatMicroscopically
the heat exchange takes place through collisions of theclgsrin the system with
the particles of the wall which separates the system fromhtha bath. If, for
example, the temperature of the heat bath is much higherttizdrof the system
under consideration, the system particles will on averameease their kinetic
energy considerably in each such collision. Through gotis with their partners
in the system, the extra kinetic energy spreads throughysters, and this process
continues until the system has attained the temperatutedfdat bath.

In a simulation we must therefore allow for heat flow from aadte system in
order to keep it at the desired temperature. ldeally, suokah éxchange leads to
a distributionp of configurations according to the canonical ensemblespeetive
of the number of particles:

p(RP) =e 7 (RA/leT), (8.72)

but some of the methods described below yield distributaifisring from this by

a correction of order ﬂNk, k > 0. In comparison with the experimental situation,
we are not confined to allowing heat exchange only with padiat the boundary:
any particle in the system can be coupled to the heat bath.

Several canonical MD methods have been developed in the pastl980
Andersef? devised a method in which the temperature is kept constant by
replacing every so often the velocity of a randomly chosetigha by a velocity
drawn from a Maxwell distribution with the desired temparat This method
is closest to the experimental situation: the velocity raliens mimic particle
collisions with the walls. The rate at which particles slibuhdergo these changes
in velocity influences the equilibration time and the kinethergy fluctuations. If
the rate is high, equilibration will proceed quickly, buttas velocity updates are
uncorrelated, they will destroy the long time tail of the ogty autocorrelation
function. Moreover, the system will then essentially perfoa random walk
through phase space, which means that it moves relativeyhys! If on the other
hand the rate is low, the equilibration will be very slow. Th&R.qjisions for which
wall collisions are best mimicked by Andersen’s procedargiven by

K

PRSTEETE (8.73)

Rcollisions ~
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wherek is the thermal conductivity of the system, amdN the particle density and
number respectivefy (see problem 8.6). Andersen’s method leads to a canonical
distribution for allN. The proof of this statement needs some theory concerning
Markov chains and is therefore postponed to Section 13.4where we consider
the application of this method to lattice field theories.

For evaluating equilibrium expectation values for timed anomentum-indep-
endent quantities, the full canonical distribution (8.i&Mot required: a canonical
distribution in the positional coordinates

p(R) = e U(R)/(keT) (8.74)

is sufficient since the momentum part can be integrated outmfomentum-
independent expectation values. For a sufficiently larggesy the total kinetic
energy of a canonical system will evolve towards its equiilim value NksT /2
and fluctuations around this value are very small. We migitetore enforce the
kinetic energy to have a value exactly equal to the one qooreting to the desired
temperature. This means that we replace the narrow distibwf the kinetic
energy by a delta-function

P (Exin) — & [Exin —3(N — 1)kgT /2]. (8.75)

The simplest way of achieving this is by applying a simpleog# rescaling
procedure as described in the previous section [Eqgs. (&1d)8.15)] afteevery
integration step rather than occasionally:

(8.76)

This method can also be derived by imposing a constant kiretergy via a
Lagrange multiplier term added to the Lagrangian of theatsnl systerd? It turns
out** that this velocity rescaling procedure induces deviatiposh the canonical
distribution of order ;K\/N, whereN is the number of particles.

Apart from the rescaling method, which is ratlérhog there have been attempts
to introduce the coupling via an extra force acting on théiglas with the purpose
of keeping the temperature constant. This force assumefotheof a friction
proportional to the velocity of the particles, as this is thest direct way to affect
velocities and hence the kinetic energy:

mi'; = Fi(R) — { (R R)f;. (8.77)

The parametef acts as a friction parameter which is the same for all padiehd
which will be negative if heat is to be added and positive éthmust be drained
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from the system. Various forms fd@r have been used, and as a first example we

considef3: 3°
_ dv(R)
{(RR) = zétfz . (8.78)

(]

This force keeps the kinetic enerty= m5; vi2/2 constant as can be seen using
(8.77). From this equation, we obtain

2—}: ~Svvi=-Yvi[OV(R —{(R Rvi| = C:T\t/ - Zfﬁz(R, R)=0. (8.79)

It can be show?f that for finite systems the resulting distribution is purely
canonical (without INK corrections) in the restricted sense, i.e. in the coordinat
part only.

Another form of the friction parametef was proposed by Berendsen al3®
This now has the fornd = y(1—Tp/T) with constanty, T is the actual temperature
T = 5im?/(3kg), and Tp is the desired temperature. It can be shown that
the temperature decays to the desired temperature expahentith time at
rate given by the coefficieny. However, this method is not time reversible;
moreover, it can be shown that the Nosé method (see belailigisnly method
with a single friction parameter which gives a full canohidéstribution?” so
Berendsen’s method cannot have this property. Berendseetlsod can be related
to a Langevin description of thermal coupling, in the seise the time evolution
of the temperature for a Langevin system (see Section 818peashown to be
equivalent to that of a system with a coupling ¥ias given by Berendsen.

Nosé’s method in the formulation by Hoovéruses yet another friction
parametel which is now determined by a differential equation:

% _ <Zvi2—3NkBTD> /Q (8.80)

where Q is a parameter which has to be chosen with some care (see)B&low
This way of keeping the temperature constant yields therdaabdistribution for
positions and momenta, as will be shown in the next subsectio

The Nosé and the Andersen methods yield precise canonistaibdtions for
position and momentum coordinates . They still have impordisadvantages
however. In the Andersen method, it is not always clear atwhate the velocities
are to be altered and it has been fotthé that the temperature sometimes levels
down at the wrong value. The Nosé-Hoover thermostat suffiesm similar
problems. In this method, the coupling const&htin Eq. (8.80) between the
heat bath and the system must be chosen — this coupling nbinsthe analogue
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of the velocity alteration rate in the Andersen method. thsuoug® that for a
Lennard—Jones fluid at high temperatures, the canonictibdison comes out
well, but if the temperature is loweréfl,the temperature starts oscillating with
an amplitude much larger than the standard deviation egddot the canonical
ensemble. It can also occur that such oscillations are moddlexr than the
expected standard deviation, but in this case the flucmtian top of this
oscillatory behaviour are much smaller than in the candr@naemble. Martyna
et al*! have devised a variant of the Nosé-Hoover thermostat wisitielieved
to eliminate these problems to some extent. Although thigcdifies with these
constant temperature approaches are very serious, theyrbesived rather little
attention to date. It should be clear that it must always beclobd explicitly
whether the temperature shows unusual behaviour, in pkatjcit should not
exhibit systematic oscillations, and the standard dewiafor N particles inD
dimensions should satisfy

_ 2 _

AT = WDT (8.81)
whereAT is the width of the temperature distribution afids the mean valué®
This equation follows directly from the Boltzmann distrilaun.

*8.5.1.2 Derivation of the N@&Hoover thermostat

In this section we shall discuss Nosé’s appro¥ch? in which the heat bath is
explicitly introduced into the system in the form of a singlegree of freedors.
The Hamiltonian of the total (extended) system is given as

H(PR, ps,9) Z ljlz#ju(ri—r) 2p(3+ngIn() (8.82)

g is the number of independent momentum-degrees of freeddhedystem (see
below), andR andP represent all the coordinatesandp; as usual. The physical
quantitiesR, P andt (time) are virtual variables — they are related to real \des
R, P andt’ viaR =R, P' = P/sandt’ = ['d1/s. With these definitions we have
for the real variable®’ = dQ//dt'.
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First we derive the equations of motion in the usual way:

% _ ‘;_pjif _ % (8.83a)
%5: ‘Zf _ % (8.83b)
%_ ajf DIU(R):_iZJ OU(ri—r;) (8.83c)
CL_F:s _ 5;:” _ (Z p? ngT> /s (8.83d)

We have used the notatioth#’/dp; = Op, .7, etc. The partition function of
the total system (i.e. including heat bath degree of freedpis given by the
expression:

=$/dps/ds/dP/dR
(Z omg ;U(ril) ;5+9kBT|n() E>. (8.84)
|]7| ]

Integrations/ dRand | dP are over all position and momentum degrees of freedom.
We now rescale the momena

< =pl (8.85)

so that we can rewrite the partition function as

1 " "
:m/dpS/ds/dP’/dR
i1 _ pa
(zz /2 HI; (1) + 56+ ke TIn(s) - E>. (8.86)
We define the Hamiltonia# in terms ofR andP’ as
%—z /2 3 U(rij). (8.87)
iji#]

Furthermore we use the relatidif (s)] = d(s—sp)/f'(s) with f(s9) = 0 and set
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g=3N+1, so that we can rewrite Eq. (8.86) as

N'/dpS/dS/dP,/dR 3NiNIlkBT

fooo| 2T

_ 1 1 H5(P',R) + pg/2Q—E
- e [an [oP [ar exp|- TR ERZQE],
(8.88)

The dependence goy is simply Gaussian and integrating over this coordinate we
obtain

5 1/2
:3N1+ 1(%?) exp(E ke T)Z (8.89)

whereZ. is the canonical partition function:

y %/dF’ /dRexp[—%(P',R)/kBT]. (8.90)

It follows that the expectation value of a quantAwhich depends oRR andP is
given by
(A(P/sR)) = (A(P,R)), (8.91)

where(-- ). denotes an average in the canonical ensemble. The ergquithegis
relates this ensemble average to a virtual-time average.
The Lagrangian equations of motion for thecan be obtained by eliminating the
momenta from (8.83a):
d?r; 1 2dr; ds

In this equation the ordinary force term is recognised wilagor 1/s* in front
and with an additional friction term describing the couglio the heat bath. The
factor 1/<* is consistent with the relation between real and virtuaktitti = dt/s
given above. Together with the definitioRs= P/sand p, = ps/s, this leads to the
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equations of motion in real variables:

Z—L‘/ :Fr’_ni' (8.93a)
O V(R - sp/Q (8.930)
35 e, (8.93¢)
dt, = (Z pZ/m— ngT> /s—p%/Q. (8.93d)

Although these equations are equivalent to the equatianthéovirtual variables,
there is a slight complication in the evaluation of averagElse point is that we
have used the ergodic theorem for the canonical Hamiltoeigmessed in virtual
variables(P, R;t,s, ps) in order to relatevirtual-timeaverages to ensemble averages.
The real time steps however are not equidistant and timeagivey in real time is
therefore not equivalent to averaging in virtual time. Eoetely the two can be
related. Expressing the real tirfeas an integral over virtual time according to

t' = 5 dT/swe obtain

1 v t1
lim = [ A(P/s,Rd1’ = lim t_f/ A(P/s,R)dt/s
0

t/'—o0 0 t/'—o0

= |:t|/i£>noof/0 A(P/S,R)dT/S]/(hm 1/ dr/s>
= (A(P/s,R)/s)/(1/s). (8.94)

It can be verified (see problem 8.10) that the latter expoassoincides with the
canonical ensemble average if we gudqual to 3N instead of Bl + 1. This means
that if we carry out the simulation using Egs. (8.93) vgtha 3N, real time averages
are equivalent to canonical averages.

Hoover’ showed that by defining = sid,/Q, Egs. (8.93) can be reduced to the
simpler form

dri p. dpi /.

dt ~m  dv =P (6.95)
d

2 = (z. i gkﬂ) Q (6.96)

and takingg equal to the number of degrees of freedom, iX. I3 was able to show
that the distributionf (P, R, {) is phase space conserving, i.e. it satisfies Liouville’s
eqguation.
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The disadvantage of the real time equations is that they@relamiltonian, in
the sense that they cannot be derived from a Hamiltoniato#tyh this might not
seem to be a problem, we prefer Hamiltonian equations ofanas they allow
for stable (symplectic) integration methods as discuseeSeiction 8.4. Winkler
et al*® have formulated canonical equations of motion in real timetbese are
subject to severe numerical problems when integrating dnaténs of motion for
large systems.

8.5.2 Keeping the pressure constant

In experimental situations not only the temperature is kejter control but also
the pressure. The partition function for tfé pT)-ensemble is given as

Q(N,p,T) = /dV eppvﬁ/dR dp eB# (RP) _ /dV e BVZ NV, T)
' (8.97)
(see Chapter 7). We use a lower-cader the pressure in order to avoid confusion
with the total momentum coordinate. We now describe the scheme which is
commonly adopted for keeping the pressure constant but igoimto too much
detail as the analysis follows the same lines as the Nosi#tahermostat, and
refer to the literature for detaif: 34 37
Andersen first presented this scheme. He proposed incdirppthe volume into
the equations of motion as a dynamical variable and scatedphtial coordinates
back to a unit volume:
r=rv¥3, (8.98)

where again the prime denotes the real coordinate — unpro@dinates are those
of the virtual system. Moreover

Pl =pi/ (sv1/3> . (8.99)

The canonical Hamiltonian is extended two variables, the volum& and the
canonical momentunpy which can be thought of as the momentum of a piston
closing the systerh.The Hamiltonian has an extra ‘potential energy’ tepk and
a ‘kinetic’ termpg /2W (W is the ‘mass’ of the piston, angl, its momentum):

p.2

%(RR> p57sap\/av) = 7'4—1/2 U[V1/3R]—|—

2
% +gkTIn(s)+ pv + p§ /2W.  (8.100)

TNote that the system expands and contracts isotropicallpssead of a piston, the whole system
boundary moves.
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The equations of motion now read:

dr 0 Pi

9= a0 = —oag (8.101a)
%5: %f: _ % (8.101b)
% — _% = —OU(VYeR) (8.101c)
dn_ o _ (m%/.;iz _ ngT> /s (8.101d)
C:T\t/ _ % _ % (8.101e)
dd'c:’ _ _a;/f _ (m%‘szsz -y (VIAR). ri> /(3V)—p.  (8.101f

It can be shown in the same way as in the thermostat case éhdisthibution of
configurations corresponds to that of ttNp{) ensemble:

p(P,R.V)=VNexp{- [#4(P ,R)+pV] /keT}. (8.102)

HooveP’ proposed similar equations of motion which conserve phpaees but
they differ from this distribution by an extra factdrin front of the exponent?

The method described is restricted to isotropic volume ghamnd can therefore
not be used for studying structural phase transitions isolA method which
allows for anisotropic volume changes while keeping thesguee constant was
developed by Parrinello and Rahmtan.

8.6 Molecular systems

8.6.1 Molecular degrees of freedom

Interactions in molecular systems can be divided into imdecular and inter-
molecular ones. The latter are often taken to be atom-ptardntions similar to
those considered in the previous sections. The intra-ral@demteractions (i.e. the
interactions between the atoms of one molecule) are deatedtiy chemical bonds
and are therefore not only strong compared with the intdeoutar interactions
(between atoms of different molecules) but include alsergétional dependencies.
We now briefly describe the intra-molecular degrees of foeednd interactions —
see also Figure 8.4.
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bend

torsion

Figure 8.4: Different types of motion of atoms within a malée

First of all, the chemical bonds can stretch. The interactissociated with this
degree of freedom is usually described in the form of a harcpotential for the
bond length:

Vstreter(l) = %GS(I - IO)2 (8.103)

wherelg is the equilibrium bond length.

Now consider three atoms bonded in a chain-like configunaieB—C. This
chain is characterised by a bending,vatence anglep which varies around an
equilibrium valueg and the potential is described in terms of a cosine:

Wialencd @) = —aB [COY@ — ¢o) + cog ¢ + ¢o)] (8.104)

where the equivalence of the anglgs and —¢g is taken into account. Often, a
harmonic approximation c¢é) ~ 1— ¢2/2, valid for small angles, is used.

Finally there is an interaction associated with chain camfiions of four atoms
A-B—-C-D. The plane through the first three atoms, A, B, C da#scaincide in
general with that through B, C and D. Ttwrsioninteraction is similar to the bend
interaction, but the angle (callethedralangle), denoted b§, is now that between
these two planes:

Viorsion($) = —a1 [cogd — &o) +cogF + Jo)]. (8.105)
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This interaction is also often replaced by its harmonic egipnation. Other
interactions and more complicated forms of these potentiah be used — we have
only listed the simplest ones.

Characteristic vibrations associated with the differeegrdes of freedom
distinguished here can be derived from the harmonic intersc— the frequencies
vary as the square root of tleecoefficients. In general, the bond length vibrations
are the most rapid, followed by the bending vibrations. Ideorfor an MD
integration to be accurate, the time step should be chosafiesrithan the fastest
degree of freedom. But as this degree of freedom will vibraith a small
amplitude, because of the strong potential, we are using ofitise computer time
for those parts of the motion which are not expected to doutii strongly to the
physical properties of the system. Moreover, if there issaickeparation between
the time scales of the various degrees of freedom of the mystaergy transfer
between the fast and slow modes is extremely slow, so thatdifficult, if not
impossible, to reach equilibrium within a reasonable amairtime. In such a
case it is therefore advisable to ‘freeze’ the fast ones lapikg them rigorously
fixed in time. In practice this means that lengths of chemicalds can safely be
kept fixed, and perhaps some bending angles. In a more apmatexdescription it
is also possible to consider entire molecules as being.rigithe next subsections
we shall describe how to deal with rigid and partly rigid nolkes.

8.6.2 Rigid molecules

We consider molecules which can be treated as rigid bodiesevimotion consists
of translations of the centre of mass and rotations arouisl fihint. The
forces acting between two rigid molecules are usually caagoof atomic pair
interactions between atoms belonging to the two differeatesules’ The total
force acting on a molecule determines the translationalionaind the torque
determines the rotational motion. In the next subsectiaskall describe a direct
formulation of the equations of motion of a simple rigid nmlé&e — the nitrogen
molecule. In the following subsection we shall then descaldifferent approach
in which rigidity is enforced through constraints addedhe Lagrangian.

8.6.2.1 Direct approach for the rigid nitrogen molecule

As a simple example consider the nitrogen moleculge, Nhis consists of two
nitrogen atoms, each of masss 14 atomic mass units (amu) and whose separation
d is kept fixed in the rigid approximation. The coordinates i tolecule are

TSometimes, off-centre interactions (i.e. not centred an atomic positions) are taken into
account too but we shall not consider these.
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A

Figure 8.5: The nitrogen moleculd.is a unit vectorg is the rotation vector.

the three coordinates of the centre of mass and the two cadedi defining its
orientation. The latter can be polar angles but here we gitacterise the
orientation of the molecule by a unit direction vecfogrpointing from atom 1 to
atom 2 (see Figure 8.5).

The motion of the centre of mass of the molecule is determimethe total
force Fit acting on a particular molecule. This force is the sum offadl forces
between each of the two atoms in the molecule and the atontseafemaining
molecules. The atomic forces can be modelled by a LennangsJmteraction
with the appropriate atomic nitrogen parameters- 3.31 A e /ks =37.3 Kand
d = 0.32960.%¢ The equation of motion for the centre of md&gy is then

Rem = Foots (8.106)

which can be solved in exactly the same way as in an ordinarysitilation.

The motion of the orientation vectdr is determined by the torquet” with
respect to the centre of the molecule, which is given in teofnthe forcesF®)
andF @ acting on atoms 1 and 2 respectively:

N = (d/2)f x (FY —F?), (8.107)

The torque changes the angular momenturaf the molecule. This is equal to
|, wherel is the moment of inertianc? /2 andw is the angular frequency vector
whose norm is the angular frequency and whose directioreisstis around which
the rotation takes place (see Figure 8.5). Note tfats not necessarily parallel to
w. The equation of motion for the angular momenturh is A or

=N (8.108)
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The angular frequencgo is in turn related to the time derivative of the direction
vectorf: _
N=wxn. (8.109)

Combining Egs. (8.108) and (8.109) leads to
A=wx (WxA)+A xA/l = —w?A+H xA/l. (8.110)

This equation of motion leaves the norm of the direction eedét invariant, as
it should — this follows directly from (8.109). In a numerigategration of the
eguations of motion the norm @fis not rigorously conserved — it can suffer from
numerical errors which may growing steadily with time. Walshow see how this
can be avoided.

Let us write down the leap-frog algorithm for the equatiommaftion (8.110) for
A:

p(t+h/2) =p(t—h/2) +h[-w?A(t) + 4 (t) x At)/I] (8.111a)
A(t+h) = A(t) +hp(t+h/2). (8.111b)

Herep represents the time-derivative bfat timest = (n+ 1/2)h. The problem
with this algorithm is that it depends ar? and this depends in turn on the time
derivativef. A convenient way of findingo? is to use

p(t—h/2) :p(t)—g(—wzﬁ—h/f/x A/l)+ o (), (8.112)
so that, usingi(t) - p(t) = 0, we obtain
2p(t—h/2)-A(t) = hw? + G(HP). (8.113)

Calling the left hand side of this equatidn we havé 4’

A =2p(t—h/2)-A (8.114a)
p(t+h/2) =p(t—h/2)+h[A(t) x A (t)/1 — AR(L)] (8.114b)
A(t+h) =A(t) +hp(t+h/2). (8.114c)

The continuum equations of motion guaranteed conservafitire norm of the unit
vectorfi. The leap-frog algorithm will enforce this normalisatiomyup to an error
of h3. It is therefore sensible to normalieafter every time step — the parameler
can then be viewed as Lagrange multiplier associated witlcoimstraintii|> = 1.
In the next section we shall discuss a simpler method forIsitimg liquid nitrogen,
using constraints in a different way.
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For general molecules, we have an extra degree of freed@nanigle of rotation
around a molecular axis — this is the third Euler angle, wiéchsually denoted
asy. The straightforward procedure for solving the equatiohsnotion is to
calculate the principal angular velocity in terms of the time derivatives of the
Euler angles. The Euler equation of motion gives the ratéhahge inw in terms
of the torque. The time derivatives of the Euler angles cam the found again
from w, and these can be used to calculate the new atomic positibhere is
however a problem when the Euler an@le- 0, as in that case the transformation
from @ to the time derivatives of the Euler angles becomes sing@aané® has
discussed this problem and has presented methods to aearsthability resulting
from this singularity. The most efficient one is to use thetgrrdon representation,
in which the orientation of the molecule is defined in terms& dbur-dimensional
unit vector rather than three Euler angles. This method mateimented by Evans
and Murad — see Ref. 49.

8.6.2.2 Enforcing rigidity via constraints

Another method for treating rigid molecules is by imposimgomomic constraints,
i.e. constraints which depend only on positions and not envéiocities, through
an extension of the Lagrangian. The Lagrangian of the sysighout constraints
reads

- L m., 1
LO(R,R):/tO dt [Z?r?—éi;U(ri—rj)]. (8.115)

A constraint is introduced as usual through a Lagrange pligitiA.>° As the
constraint under consideration should hold for all timkds a function oft. A
simple example of a constraint is the following: particlesrid 2 have a fixed
separatiord for all times (this could be the separation of the two atoneshitrogen
molecule). Such a constraint on the separation is cdltedl constraint- it can
formally be written as

O[R(t)] = [r1(t) —ra(t)]?—d? =0. (8.116)

The Lagrangian for the system with this constraint reads

. . 151

LRR) =Lo(RR) — [ dtA(t) {[rl(t) - rz(t)]z—dz} . (8.117)
o

The integral over time is needed because the constraints hioid all times

betweenty andt;. The equations of motion are the Euler-Lagrange equations

for this Lagrangian. These equations will depend on the &g parameters,



8.6. Molecular systems 253

A, whose values are determined by the requirement that thid@oimust satisfy
the constraint.

A slightly more complicated example is the trimer molecu® &' The linear
geometry of this molecule is in principle imposed autoralycby the correct bond
constraints between the three pairs of atoms. However, dt®mof this molecule
is described by five positional degrees of freedom: two tanedfie orientation of
the molecule and three for the centre of mass position. Tiee tatoms without
constraints have nine degrees of freedom and if three o theseliminated using
the bond constraints, we are left with six degrees of freeifstead of the five
required. Therefore one redundant degree of freedom isdedlin this procedure,
which is obviously inefficient. A better procedure is theref to fix only the
distance between the two sulphur atoms:

Irgn —rgo > =d? (8.118)
and to fix the position of the C-atom by a linear vector comstra
(rsw +rg2)/2—rc=0, (8.119)

adding up to the four constraints required.

For a molecule, in general a number of atoms forming a ‘bac&bset is
identified and these are fixed by bond constraints (the twphsulatoms in our
example) and the remaining ones are fixed by linear contdrafrthe form (8.119).
In the case of a planar structure we take three noncolineansas a backbone.
These atoms satisfy three bond constraints and the rergaitoms are constrained
linearly. In a three-dimensional molecular structure,rfbackbone atoms are
subject to six bond constraints and the remaining ones teearivector constraint
each. Inthe constraint procedure, the degrees of freeddine abnbackbone atoms
are eliminated so that the forces they feel are transfewdtie backbone. This
elimination is always possible for linear constraints sashthose obeyed by the
nonbackbone atoms.

Let us now return to our GSexample. First we write down the equations of
motion for all three atoms, following from the extended Laygian (the Lagrange
parameter for the bond constraint is calledhat of the linear vector constraip):

Msfgy =F1—2A(rqn —rg2) —H/2 (8.120a)
Msf'g2) = F2+2A (rgn —Tg2) — H/2 (8.120b)
mci'c = Fe+ . (8.120¢)

The linear constraint (8.119) is now differentiated twicghwespect to time, and
using the equations of motion we obtain

Fc+IJ=2ﬂmS(F1+F2—ﬂ)- (8.121)
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We can thus eliminat@ in the equations of motion for the S-atoms and obtain,
with M = 2mg + mc:

) me me .

Mef's (1_W> Fl—szJr—Fc 2A(rgn —Tap); (8.122a)
) me me

Mef's (1_W> FZ—WF1+—FC+2)\( —— (8.122b)

These equations define the algorithm for the positions ofStsoms, and the
position of the C-atom is fixed at any time by the linear caistr

Note that we still have an unknown parameterpresent in the resulting
equations: this parameter is fixed by demanding that the bonstraint must hold
for rqe) andrgpe) at all times (note that we have not yet used this constrainis.
not easy to eliminatd from the equations of motion as we have done wthas
the bond length constraint is quadratic. Instead, we salv@ fat each time step
using the constraint equation. We outline this proceduretin example. Suppose
we have the positionisy;) andr g at timest andt —h and that for both these time
instances the bond constraint is satisfied. According toetiigations of motion
(8.122) in the Verlet scheme, predictions for the positiattst- h are given by

o (t+h) = 2rgn (0) ~ T (t =)+ 12 (1= BX) Fafo)-

PSRy 4+ 2 Fo(t) — 20°A (D lrs (0~ rsa () (8.123a)
5o (t+h) = 2rge (6) — ra (t— ) + 12 (1 T2 ) Fa(t) -

WP 4+ 2 BFe(t) + 202A ()l se (D) —Tsa (1) (8.123b)

The predictions for the positions &t+ h are linear functions oA and if we
substitute them into the bond constraint (8.118), we olajoadratic equation for
A which can be solved trivially — of the two solutions, we kekp smallest value
of A. This means that the bond constraint is now satisfied to ctengmecision
for all times. It should be noted that the valueXofn this procedure will deviate
slightly from its value in the exact solution of the contimuase, but the deviation
remains within the overall ordér* error of the integration schenié.

We have given the CSexample here because it illustrates the general procedure
involving linear constraints which are all eliminated frahe equations of motion,
thereby reducing the degrees of freedom to those of the baekatoms (the two
sulphur atoms in our example). These are confined by quadratid constraints.
The Lagrange multipliers associated with the latter ard kephe problem and
fixed by the bond constraints themselves. After solvingliertiackbone, the linear
constraints fix the positions of the remaining atoms uniguel
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The nitrogen molecule which was discussed in the previobsestion using a
direct approach can be treated with the method of consttdiris a simple problem
because there are no linear constraints which have to betasemhove redundant
degrees of freedom from the equations of motion, and we finiti the following
equations:

M= Fl—l—)\(l'l—l'z) (8.124&)
m2'r'2: F2—)\(r1—r2). (8.124b)

The Verlet equations lead again to linear predictionsrfoandr, at the next time
step and substituting these into the bond constraint leadsquadratic equation
which fixes the Lagrange multiplier. For an implementation, see problem 8.7.

8.6.3 General procedure — partial constraints

In the previous section we have considered systems cangsticompletely rigid
molecules. Now we discuss patrtially rigid molecules, cstirsg of rigid fragments
which can move with respect to each other. The motion of tagrfrents attached
by chemical bonds can be described in terms of stretchingglibg and torsion,
as described in Section 8.6.2. In general, partial comggraiannot be treated
using the methods given previously. Trying to use the cairds to reduce the
equations to a smaller set and formulating equations forritfid fragments in
terms of quaternions is quite complicated. Ryckaral>1~>* devised a simple
and efficient iterative method for treating arbitrary coaistts which is now still
the most important method for MD with polyatomic molecule&nalogous to
the method of constraints for rigid molecules, the rigidifythe fragments can
be imposed by constraints, which are all expressed in Gante®ordinates for
simplicity. The Lagrange multipliers are determined a#éach integration step by
substituting the new positions into the constraint equatio

The algorithm, called SHAKE, is formulated within the franwrk of the Verlet
algorithm. The forces experienced by the particles condighhysical and of
constraint forces. The constraints are givendpyR) = 0, wherek =1,...,M;
M is the number of constraints. We denote the physical forqeaoticlei by F; and
the constraint force igﬂﬂzlAkDiok(R), whereA is the Lagrange multiplier which
is to be determined. At time stdp= nh we have at our disposal the positions at
timest andt —h. These positions satisfy the constraint equatiopd) = 0 to
numerical precision. The aim is to find the positions at timeh, satisfying the
constraint equation. First we calculate the new positiG(ts+ h) without taking
the constraints into account:

Fi(t+h) = 2r;(t) —ri(t— h) + W2Fi[ri(t)]. (8.125)
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The final positions;(t + h) can be written as
M
rit+h)=Fri(t+h)— Z ADiok[R(1)]. (8.126)
k=1

The A are found in an iterative procedure. We number the iteratlmnan index

[. In each iteration, a loop over the constraikts carried out, and in each step of
this loop, the Lagrange paramefgrand all the particle positions are updated. The
positions are updated according to

rrew — 194 _ 22 U0 gy [R(t)). (8.127)

The parametei\é|> is found from a first order expansion of(R), requiring that
this vanishes:

R ~ ol [RY — A S Do R i ai[R(t)] = O, (8.128)

leading to
B Gk[R°|d]
- {3 Do R Diok[R(1)]}
Each step will therefore shift the positions more closelthepoint where they all
satisfy the constraint — the iterative process is stoppeehvatl the constraints are
smaller (in absolute value) than some small positive number

The algorithm can be summarised as follows:

A0 (8.129)

CalculateR(t + h) using (8.125);
SetRO equal toR(t + h);
REPEAT
Calculater.” from (8.129);
FORk=1TOM DO
SetROld equal toR"eW
UpdateRe!d to R using (8.127);
END FOR
UNTIL Constraints are satisfied.

The SHAKE algorithm turns out to be quite efficient: for a gystof 48 atoms
with 112 constraints, typically 25 iterations are necessarorder to achieve
convergence of the constraints within a relative accur&&y @0 7.52
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8.7 Long range interactions

Coulombic and gravitational many-particle systems arereaginterest because
they describe plasmas, electrolytic solutions, and dalestechanical systems.
The interaction is described by a pair-potential which ine¢h dimensions is
proportional to ¥r — in two dimensions it is In. The long range character of
this potential poses problems. First of all, it is not cledwether the potential can
be cut off beyond some finite range. One might hope that foraagehneutral
Coulomb system screening effects could justify this praced Unfortunately,
for most systems of interest, the screening length excealfighe linear system
size which can be achieved in practice, so we cannot rely isrstineening effect
to justify cutting off the potential, as this would esseltialter the form of the
screening charge cloud. Also, when using the minimum imageention with
periodic boundary conditions, equally charged particlrsitto occupy opposite
ends of a half diagonal of the system unit cell in order to misé their interaction
energy, thus introducing unphysical anisotropies. Theesfwe cannot cut off the
potential and all pairs of interacting particles must bestainto account when
calculating the forces.

Connected with this is an essential difference in the treatnof periodic or
nonperiodic system cells. In the latter case, we simply hgelfr potential
(or Inr in two dimensions), but in the periodic case we must face tioblem
that in general the sum over the image charges in the periegiicas does not
converge. This can be remedied by subtracting an offset fhenpotential — note
that adding or subtracting a constant to the potential doeslter the forces and
hence the dynamics of the system — leading to the followipgession for the total
configurational energy for a collection of particles wittadye (or mass); located
atg,i=1,...,N:

a9; e L
Here y;; denotes a sum overand j running from 1 toN with the restriction

I < J; furthermore,y g denotes a sum over the locatioRof the system replicas,
the prime with the second sum denoting exclusiorRof 0. From now on we
shall restrict ourselves to charge-neutral systems Wity = O, for which the

second term in (8.130) vanishes. The system then has a dipmigent and the
leading term in computing the total energy in PBC is the tesfithe dipole—dipole

interactions between the replicas. Evaluating the sumtbeareplicas is a difficult
problem, even for charge-neutral systems and it will be esltbd in the next
subsection. In Section 8.7.2 we shall then see how the fararde evaluated
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more efficiently than in the conventional MD approach wheeemust sum over
all pairs.

8.7.1 The periodic Coulomb interaction

The total configurational energy of the charge-neutralesyss given by

a9
g =0. (8.131)
ZKJ |ri — rJ+R| Z |

It is assumed here that the particles are point particlest i) their charge
distribution is given by a delta-functiop;(r) = gio(r —r;). In most realistic
cases there will be additional short range interactionggmiing the particles from
approaching each other too closely. We now apply a Fouresform as defined
in Egs. (4.104-4.105) to (8.131). We have

[ &k 4m dkr
2 e k2 (8.132)
Substituting this into (8.131) and using
kR (2m)° 30,
Ze‘ = Zé (k—K) (8.133)
whereV is the volume of the system akdare reciprocal lattice vectors, we obtain
1 gKrii

K#£0i<]

We have not yet made any progress as we have only replaceufitiigeisum over
R by another infinite sum oves. It might seem that this sum diverges for sni&Jl
but this is not the case for charge-neutral systems: thisalgw is responsible for
the exclusion of th& = 0 term, and it ensures convergence of the sidatiérms.
Surprisingly, the divergences in the original real-space €3.131) were associated
with the long range character of the force whereas the dévexg in (8.134) is due
to the short range (lard€) part. In reality, the ions have a finite size, which means
that they will repel each other at short distances and thiie® that the Coulomb
interaction has to be taken into account for ranges beyona smnall cut-offrcgre
only, and we can neglect thé-values forK > 211/rqoe. Of course, this does not
yield an exactly spherical cut-off as the reciprocal latfie cubic, but if the cut-off
radius is sufficiently small this will cause no significantags. Moreover, the core
radius can be chosen much smaller than the range of reputsamction (which
is always present in realistic models) so that this errormreduced arbitrarily.
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In case one insists on having delta-function distributiarsf the cut-off radius
is so small that calculating the Fourier sum is still incarieatly demanding, it is
possible first to replace the delta-charges by artificiakmoted charge distributions
with some finite radius and then correcting for this replagem This is done in
the so-called Ewald summation technique. We shall not giwdl derivation of the
Ewald summation method since it is quite lengthy — it is désct elsewheR®: 56—
but sketch briefly the idea behind this technique. In the Bwadthod, the extended
charge distribution is taken to be a Gaussian:

pi(r) =q (%)3/zexp(—ayr—ri]2) (8.135)

where the normalisation factor is for the three-dimendiarzse. This charge
distribution results in a converging-sum, and this extension is corrected for
by adding the potential resulting from the difference betwehe point-charge
and Gaussian distribution. Since this difference is néutrgenerates a rapidly
decaying potential, which can then be treated by the minirmage convention.
The total interaction potential for charggslocated ar; is then given as

zq.q,effc (var;) (;T)”glqs

i<]

(8.136)
where the function erfc is the complementary error functigfined in (4.116):
erfc = 1—erf. The first term of the Ewald sum converges rapidly due #® th
exp—K?/(4a)] term resulting from the Gaussian charge distribution. Twsd
term in the sum is short-ranged, so it can be treated in a mminmage
convention. The forces can be found by differentiation. Eweald sum can also
be generalised for dipolar interactions (Ewald-Kornfelethod).

In a careful treatment of the Ewald technique, the sum isezhout formally by
taking a large volume of some particular shape (e.g. a spbentaining the system
replicas and then this shape is increased. The reason $oisttiiat the sum over
the interactions is conditionally convergent, i.e. it degeeon the order in which the
various contributions are taken into account. This is d@rplé by the fact that the
system replicas all have a dipole moment and will hence lupld surface charge
at the boundary of the huge volume. The most natural boundamgition (the
one which is arrived at in more pedestrian derivations) isestent with the sphere
being embedded in a perfectly conducting medium. For therspbmbedded in a
dielectric, a correction must be includ&tlit is important to be aware of this when
calculating (say) dielectric properties of a charged syste

UPBC— gigl
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8.7.2 Efficient evaluation of forces and potentials

As a result of the long range of the forces, all interactingspenust be taken
into account in the calculation of forces or potentials. Tdimightforward
implementation, considered in the previous sections & thiapter, also called
the particle-particle methodPP) because all pairs are considered explicitly, would
require ¢(N?) steps, but it turns out possible to reduce this to a more fabe
scaling. We shall briefly sketch two other methods, and tlwsider a third one,
thetree methodn greater detail.

In the particle-mesh(PM) method, a (usually cubic) grid in space is defined. A
mass (or charge) distributigm is then defined by assigning part of each particle’s
mass (or charge) to its four neighbouring grid points adogrdo some suitable
scheme. The potential can then be found by solving Poissguiation on the grid

03U (r) = —47p(r) (8.137)

WhereD2D is the finite-difference version of the Laplace operatoing$ast Fourier

transforms (see Section A.9), this calculation can be edirout in a number of
steps proportional télogM whereM is the number of grid points. Knowing
the potential, the force at any position can be found by takire finite difference

gradient of the potential, after a suitable correction fu self-energy resulting
from the inclusion of the interaction of a particle with ifsan this procedure.

This method obviously becomes less accurate for pairs dicfes with a small

separation, as in that case the Coulomb/gravitation pateist not sufficiently

smooth to be represented accurately on the grid. Therefigesensible to treat
particles within some small range (for example a range coaigpa to the grid

constant) by the PP method. This can be done by splittingaifee finto a smooth
long range (LR) and a short range (SR) part:

F=FR4+FR (8.138)

such that the short range force vanishes beyond some smgi,rand the long
range force can be calculated accurately on the grid. Tliirsgplcan be obtained
by considering the long range force as resulting from a gartivhose charge
(or mass) is distributed over some finite range (homogensphsre, Gaussian
distribution, ...). The short range force is then the patémesulting from the

difference between the point charge and the finite-widttribligion (cf. the Ewald

method). The long range interactions are treated as in tharekhod, and the
short range ones can be dealt with using the PP scheme. Thigngsnethod is

called theparticle-particle/particle-mest{PPPM) or PBM method. For a detailed
description of the PM and PPPM methods, see Ref. 19.
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Figure 8.6: Hierarchical subdivision of the full simulatispace (a square) into children,
grandchildren etc.

We now describe thetree-code algorithm in some detat™®®  The
amount of computer time involved in the evaluation of thecéar in this method
is reduced to/(NInN) steps. We describe the Barnes-Muversion in the
formulation by Van Dommelen and Rundenste?ef? and restrict ourselves
to two-dimensional gravitational (or Coulomb) systemsthwan interaction Iin
between two particles of unit mass (or charge) and separatidhe idea of the
method is that the force which a mass experiences from atldtester of particles
can be calculated from a multipole expansion of the clustée convergence of
the multipole expansion depends on the ratio of the dist&nore the cluster and
its linear size.

The total system volume is hierarchically divided up intodis. We start with
a square shape (level 0) which in a first step is divided intw gguares of half the
linear size (level 1), and at the next step each of these sgusdivided up into
four smaller ones etc. We speak of parents and children @frequn this hierarchy
— see Figure 8.6. Now consider some squ&at leveln. It is not justified to apply
the multipole expansion to nearest neighbour squares #slgsiin neighbouring
squares might be very close so that the multipole expansmndarequire far too
many terms. These squares will be dealt with at a higher,leeelve apply this
approximation in each step to at least next nearest squadeskip squares which
lie in regions which have been treated at previous levelsrdibre, the squares
with which the particles irs will interact at the present level are those (1) which
are not nearest neighbours®and (2) whose parent was a nearest neighbour of the
parent ofS. These squares form theteraction listof S. Figure 8.7 shows which
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Figure 8.7: Interaction list of a squaB&eat leveln. The squares at leval are separated
by thin lines, their parents (at leval— 1) by heavy lines. For the square labeled by S,
the squares in the interaction list of a square are denotédTthe nearest neighbours are
labeled by N.

squares are in the interaction list &f It will be clear that all the interactions will
be taken into account when proceeding in this way.
More specifically, at leveh we carry out two steps.

1. We calculate the multipole moments of each square of theept level.

2. For each particle, we calculate the interactions withitiberaction list of the
square to which it belongs using the multipole expansiortfeparticles in the
cells.

This process is carried through oveax = (log, N)/2 steps so that fax being an
integer power of 4, the squares at the lowest level contaiaverage one particle.
Empty squares are ‘pruned’ from the tree, that is, they areinmed up any more.
Let us now calculate the number of steps needed in this puoeedVe assume
that we carry out the multipole expansion up to ordér This number is
independent of the number of particlsis At level n, the first step, in which the
multipole moments are calculated, requides M steps. The second step requires
N x M x K steps, wher& is the average size of the interaction list, which is at
most 27.K andM are fixed numbers, there afgInN) levels, so the total number
of steps scales ag(NInN).
For two dimensions, the multipole moment expansion is venpk if the space
is viewed as a complex plane with particles at positibasx+iy. The potential
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is then given as the real part of(k) and this can easily be expanded in a Taylor
expansion around the centre of the cell. For a cluster agrattehe origin and
consisting of particles of chargg at positionsz, the potential at the poirt is
given by

U2=Y glIn(z—z) =alnz— —+ﬁ<—> (8.139)
iZl kZl ra z

whereR is the linear size of the cluster containiig particles and the moment

expansion coefficients, are given by

aO:IZqi and ak:i%’kz 1 (8.140)
For the field, written as a complex numtieat the pointzwe have
< A M-+1
E(z) = kZOF +O0(R/2MT. (8.141)

From Figure 8.7 it can be seen that a worst case estimaRy/fis 2/3. In practice,
fewer than 20 multipole coefficients are necessary to olmteiohine accuracy (32
bits).

In fact, it turns out possible to reduce the amount of workdeeefor the force
evaluation to'(N). The resulting method is called the fast multipole method
(FMM) — see refs. 62 and 63.

8.8 Langevin dynamics simulation

Most realistic physical systems are tractable only imade] in which the
interesting features of the system are highlighted and irchwvthe less relevant
parts are either eliminated or treated in an approximate \wethis spirit we have
for example eliminated molecular degrees of freedom ini&e& 6 by considering
(parts of) molecules to be rigid. Another example of thisrapph is the Langevin
dynamics technique, the subject of the present section. si@@na solution
containing polymers or ions which are much heavier than theeat molecules.
As the kinetic energy is on average divided equally over thgrees of freedom,
the ions or polymers will move much more slowly than the solveolecules.
Moreover, because of their large mass, they will change thementa only after
many collisions with the solvent molecules and the pictuingctvemerges is that of
the heavy particles forming a system with a much longer ticadesthan the solvent
molecules. This difference in time scale can be employetirtoreate the details of
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the degrees of freedom of the solvent particles and représein effect by forces
that can be treated in a simple way. This process can be a¢amieanalytically
through a projection procedure (see chapter 9 of Ref. 11efedences therein) but
here we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles withaldtrtg into account
their degrees of freedom explicitly? When a heavy partislenoving through
the solvent, it will encounter more solvent particles in thant than in the back.
Therefore, the collisions with the solvent particles wifl averagehave the effect
of a friction force proportional and opposite to the velpaf the heavy particle.
This suggests the following equation of motion for the hepaiticle:

m% (t) = —wv(t) + F(1) (8.142)
wherey is the friction coefficient andr the external or systematic force, due to
the other heavy particles, walls, gravitation, etc. It hasrbnoted in Section 7.2.1
that the motion of fluid particles exhibits strong time ctations and therefore the
effects of their collisions should show time correlatiofeefs. Time correlations
affect the form of the friction term which, in Eq. (8.142),siaeen taken dependent
on theinstantaneouselocity but which in a more careful treatment should inelud
contributions from the velocity at previous times througmamory kernel:

m% == /_tm dt’ y(t —t)v(t’) + F(t). (8.143)

In order to avoid complications we shall proceed with thepgdenform (8.142). In
the following we shall restrict ourselves to a particle iraimension; the analysis
for more particles in two or three dimensions is similar.

Equation (8.142) has the unrealistic effect that if the mdkforces are absent,
the heavy particle comes to rest, whereas in reality it ebesca Brownian motion.
To make the model more realistic we must include the rapittians in the force
due to the frequent collisions with solvent particles on ¢bghe coarse-grained
friction force. We then arrive at the following equation:

m%(t) = —yu(t) + F(t) +R(t) (8.144)

whereR(t) is a ‘random force’. Again, the time correlations presenthia fluid
should show up in this force, but they are neglected once raogethe force is
subject to the following conditions.

e As the average effect of the collisions is already absorbettié friction, the
expectation value of the random force should vanish:

(R(t)) = 0. (8.145)



8.8. Langevin dynamics simulation 265

e The values oR are taken to be uncorrelated:

(RHR(t+1))=0 for T >0. (8.146)

e The values oR are distributed according to a Gaussian:
PR(t)] = (2m(R?)) Y2 exp(—R?/2(R?)). (8.147)

All these assumptions can be summarised in the followingqoigtion for the
probability for a set of random forces to occur betwggandt;:

PR (t)]tg<t<t; ~ exp(—z—lq /to "t I%(t)) (8.148)

with g a constant to be determined.

Below we consider the numerical integration of the equatiohmotion for the
heavy particles, and in that case it is convenient to asshatdle random force is
constant over each time step: at stethe value of the random forcek,. For this
case, the correlation function for tika reads

JdRdRy: 1. AR exp(— 4 37, REAL) RiRn
(RRm) = - (8.149)
JdR@Ry:1...dRy exp( 4 3, RPAt)

which yields the value 0 fon #£ m, in accordance with the previous assumptions.
Forn = mwe find the valuey/At, so we arrive at

(RaRm) = Aﬂtanm- (8.150)
For the continuum casét — 0 (8.150) converges to thdistribution function
(ROR(t+T1)) =0q0(1). (8.151)

We now return to the continuum form of the Langevin equati&ta44). This can
be solved analytically and the result is

1 rt
o(t) = v(0)exp(—t/m) + = / exp|—(t — T)y/m R(T)dT. (8.152)
0
Because the expectation valueR¥anishes we obtain

(v(t)) = v(0) exp(—yt/m) (8.153)
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which is to be expected for a particle subject to a frictiorcéoproportional and
opposite to the velocity.

The expectation value af is determined in a similar way. Using (8.151) and
(8.144) we find

(o) :vSexp(—Zyt/m)%—%m(l—e‘sz), (8.154)
which for larget reduces to

2\ _ 9
<[v(00)] >_ oy (8.155)

According to (8.152)p depends linearly on the random fordeg) and as the
latter are distributed according to a Gaussian, the santdéeld for the velocity —
the width is given by (8.155), so we have

1/2
Plu(t)] = (%) expl—mu(t)2y/q] (8.156)

for larget. This is precisely the Maxwell distribution if we write
q=2ksTy, (8.157)

so this equation defines the valuegpfecessary to obtain a system with temperature
T. In Chapter 12 we shall discuss Langevin types of equatior@gsmore formal
way, using the Fokker-Planck equation.

The velocity autocorrelation function can also be obtaifmech (8.152):

(v(0)(t)) = (v(0)2)e /M, (8.158)

The absence of a long time tail in this correlation functiogflects the
oversimplifications in the construction of the Langevin &ipn, in particular the
absence of correlations in the random force and the facttfigafrictional force
does not depend on the ‘history’ of the system.

The results presented here are easily generalised to mameotie dimension.
However, including a force acting between the heavy pagiciauses problems if
this force exhibits correlations with the random force, &ud (8.157) is no longer
valid in that case. Such correlation effects are often régtband the systematic
force is simply added to the friction and the Langevin term.

A further refinement is the inclusion of memory kernels in filmees, similar to
the approach in Eq. (8.143). In that case, the random fore lisnger uncorrelated
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— it is constructed with correlations in accordance withftbhetuation-dissipation
theorem®*

(ROOR(1)) = (v?) y(t). (8.159)

However, this equation is again no longer valid if exteratés are included. The
approach with memory kernels has led to a whole industry -@fadied generalised
Langevin-dynamics simulatiorf§-6”

The systematic interaction force between the particlesensblvent will affect
the friction which these particles are subject to throughklrbglynamic effects.
This coupling is usually neglected, but a method includimgst effects has been
proposed and implement&8. We mention the Dissipative Particle Dynamics
(DPD) which is based on these idé4s.

An algorithm for simple Langevin dynamics can be formulaatting from the
methods given in Section 8.4.1.2. Suppose the random fei@anistant during one
integration step. Denoting the force during the intef@ah] by R, and that during
the interval[—h, 0] by R_, the random force can directly be included into (8.40):

x(h) [1+yh/2] +x(—h)[1-yh/2] =
2x(0) + h?[F(0) + R, /2+R_/2]. (8.160)

Therefore, at each step a new value of the random force dtiigew interval
must be drawn from a Gaussian random generator, and this ferto be used
together with the random force generated at the previoysisterder to predict
the new position. This is, however, not always a satisfggwocedure. Normally,
the integration time step is determined by the requirement that the systematic
force F can be assumed to be reasonably constant over a time intervahis
means that the time over which we take the random force to bstaot depends
on the smoothness of the systematic force. In fact we wouwdéeprallowing for
a rapidly varying random force combined with a large timgst#owed by the
systematic force. This turns out to be possible. Using tagssital properties of
the random force, equations of motion can be obtained whick@mewhat similar
to the ones given here, but with more complicated correiatlmetween the random
contributions at subsequent steps — for details see Ref. 70.

It is straightforward to develop a Langevin program for aecole in a fluid or a
gas, using the simple algorithm presented here. For ma@saantaining chains of
at most three chemically bonded atoms, torsion is abseithwéduces the number
of forces considerably. Examples are molecules with ahetteon conformation,
such as Ch (methane) and Cf-and two-dimensional molecules. In problem 8.12
the construction of a Langevin molecule for methane is acmred.



268 Molecular dynamics simulations

8.9 Dynamical quantities — nonequilibrium molecular dynarmics

In the molecular dynamics method, the equations of motionaotlassical
many-body system are integrated numerically. There is aeam to restrict the
applicability of this method to systems in equilibrium. M®the method of choice
for dynamic phenomena in equilibrium or nonequilibriumtsyss. We speak of
nonequilibrium molecular dynamics (NEMD). We consider texamples very
briefly here.

There exists a relation between time correlation functi@ml transport
coefficients via the dynamic fluctuation-dissipation tleofl > The physical
idea behind this theorem is that, in an equilibrium systearfigles diffuse and
the dynamics of this diffusion tells us something aboutrtlaility to transport
for example heat or charge. Therefore we can measure transpefficients
by studying the diffusion of the positions or velocitiesdahgh the system. A
disadvantage of measuring transport quantities in thisiséyat diffusion is often
rather slow in equilibrium so that accurate results for $port coefficients are
sometimes hard to obtain. Therefore it is useful to apply ld fa@d measure the
response to the action of that field directly by keeping tratkhe motion of the
particles (a thermostat must be used in order to preventibee from increasing
steadily as a result of the interaction with the externaldjiel A complication
may arise in connection with periodic boundary conditiassjn that case surface
effects may be induced if the applied force is not compatilité the periodicity.
Therefore perturbing forces are often chosen sinusoidél avperiod compatible
with the PBC. An example is provided by the determinationhef$hear viscosity,
caused by fluid layers moving in parallel directions, witffatent speed, rubbing
against each other. The shear viscosity can be medsufébly applying a force in
the x-direction which varies with the coordinateaccording to

F(z) = Fycogkz)X (8.161)

wherek = 2r7/L, andL is the linear size of the cubic volume. The shear viscagity
can then be measured via the mean velocity inktdeection of the particles with
a given coordinate:

%x(2) = p/(K*n)Focogk2) (8.162)

and this average velocity can easily be determined. In doderprove the estimate
one can determine the shear viscosity with varikys- 2rm/L to extrapolate to
k— 0.

A second example of NEMD is the transfer of energy betwedereifit degrees
of freedom. This is of interest in detonation waves. A detiomawhich traverses a
medium of explosive molecules continuously ‘rechargestlftby new unstable
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molecules falling apart, thereby releasing fragments waighh velocities. For
an unstable molecule to be disrupted it is necessary forrémeslational energy
imparted by a collision with a fast fragment to be transférte bond length
vibrations. For diatomic molecules, the two different dexy of freedom can easily
be separated. Holiaet al3® 4% have carried out MD simulations in which the
translational and vibrational degrees of freedom werergdifferent temperatures
by coupling them to different heat baths which were thenddroiff or replaced by
a single bath (at the higher temperature). In this way it wessible to determine
energy transfer rates between the different modes.

Exercises

8.1 [C] For coding the leap-frog method [EQ. (8.7)] two arrays aseded, one
containing the velocities at timés= (n+ 1/2)h, and one for the positions at
t = nh. The same holds for the velocity-Verlet algorithm.

At first sight it might seem that the Verlet algorithm wouldedemore
memory: arrays containing the positions at tihesnh, t = (n—1)h andt =
(n+ 1)h. However, the valug;[(n— 1)h] can be overwritten by [(n+ 1)h].
Use this to code the Verlet algorithm such that only two asrase needed.
Test it for a number of particles moving in one dimension angjexct to the
harmonic oscillator potential.

8.2 The neighbour list proposed by Vefleeeds updating every 10-20 integration
steps and this update requires of the ordéXdéteps for a system containing
N particles. Another bookkeeping device consists of partitig the system
into cubic volumes and keeping track of which particles arebé found
in each of these volumes. Consider a two-dimensidnalL system for
convenience. We split this up int® x P squares of linear size/P. P is
chosen such that the potential can be cut off safely beyotitl Suppose
we have for each square a list of particles within that voluriidese lists
will change whenever a particle leaves a square and movesdighbouring
one. The force evaluation now includes only particle pair@se members
are either in the same or in neighbouring cells.

(a) How many particles are on average to be found in one square
(b) How many pair forces are on average taken into accounhig ‘tell
method’?

(c) Calculate the gain in speed with respect to the method hictwall
pair interactions are taken into account, assuming thapérécles are
distributed more or less homogeneously over the volume.



270 Molecular dynamics simulations

8.3 The first molecular dynamics simulations were carrietl yu Alder and
Wainwright* for hard spheres. The discontinuity in the potential cadis f
a different approach than that used for smooth potentiate State of the
system is given by the positionrs and velocitiesv; (i labels the particles)
at some timeg; which is usually the time of the last collision experienced
by i. We must calculate the velocity changes for the next paietgung a
collision.

We consider the elastic collision between two hard spheessg] j, which are
moving with velocitiesy; andv;. At timet their positions are; andr ;. After
the collision, velocities are andv’j respectively. The sphere diameteois

(a) Show, using energy and momentum conservation, that llhages in
velocities of the two particles are given by

AV =V — Vi = —Avj = rij (Vi ~Ti) — i)

o
wherevij = v; —Vv;j andrjj; = rj —rj. For each pair of particles we need to
know at which time they will collide (note that because of P8&&h pair
will indeed collide at some time unless the velocities haggy\peculiar

values). The collision time for pair j is found by
rij +tvij| = 0.

This is a quadratic equation which yields two solutions fog tollision
timet. The first time after the current time must be chosen and decbr
as the collision time of paiy.

The simulation is now constructed as follows. At the begignithe
particles are released from a lattice with velocities adicgy to a
Boltzmann distribution. For alN(N — 1)/2 pairs, the collision times are
calculated and stored in a sorted list. The first elementisflit contains
the first collision to take place. For this collision we cd#ta the new
velocities and positions. Then each pair containing at leas of the two
collision partners is removed from the list. Their new @in times are
calculated and added again to the list in such a way that tteg lemains
sorted with respect to the collision times.

(b) How does the simulation time scale with the number ofigad?

(c) Explain why the kinetic energy of the hard sphere systemigorously
constant.
In order to calculate pressures we must adapt the virialrémedo this
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system. The virial theorem for smooth forces reads

BP 1 /8 e
7_1+3NI<BT<i;r"F'>'

The problem is that the force acts over an infinitely smalletiduring
which it has an infinite value. Show that for this case thealitieorem
reads

BP 1
— =1+ o Z Vij T,
p N <V2>t collisions

where the sum is over the collisions taking place within @grmgling time
t.

8.4 (a) Show that the Verlet algorithm can be written in thaerfo

p(t+h/2) \ _ p(t —h/2) +hF[x(t)]
x(t+h) )~ \ x(t)+hpt—h/2)+h2F[xt)] /-

(b) Find the Jacobian matrix of this map and show that theeVatgorithm is
symplectic.

8.5 Consider a time evolution operator acting on vectorswia tlimensions,
which is described by the symplectic operator @Rp ):

Z(t) = exp(tAp)z(0),
z=(p,X) = (&, 2).

(a) Show that symplecticity implies that

om0
op  oOx’

(b) Find a necessary condition to writg asJ,Hp. Show that this condition
is equivalent to that found in (a).

(c) Show thaHp is a conserved quantity.

8.6 In this problem we consider Andersen’s method for keptire temperature
constant during a MD simulation. In particular we want to find momentum
refresh rateR for which the method mimics wall collisions best. The reffres
rate is defined such that the average number of velocity apdhiring a time
At is equal toRAt. Suppose the wall of the system is at temperaiyreut the
system itself is at a temperatufe+ AT.
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(a) Show that the rate at which heat is absorbed by the systgivan by

aQ KVY/3AT,
At

wherek is the thermal conductivity, defined WYT = k|, wherej is the
heat flowing through a unit area per unit time.

(b) Show that the rate at which heat is transferred to a systigimout walls in
Andersen’s method is equal to

AQ
— ~ RNIgAT.
At s

(c) Derive from the two equations obtained the optimal rate:

K

Ropt ~ [ 1/3kgN273

wheren=N/V.

8.7 [C] In this problem we consider a program for simulating nigngnolecules
in microcanonical MD using the method of constraints. Thaatigns of
motion are given in Section 8.6.2.2 [Eqgs. (8.124)]. The bage parameters
A occuring in these equations are determined by requiringdhstraint to be
satisfied by the positions as predicted in the Verlet algoritThese positions
are given in the form

ri(t+h)=a +bjA.

The list of particles is grouped into pairs of atoms forminge mitrogen
molecule: atoms|2- 1 and 2 belong to the same molecule. The integration
is carried out in a loop over the pails— each pair has its own Lagrange
parameterd;. For reasonable time step sizes the roqgt®f the constraint
equation are real. The smallest of these (in absolute vaue)be chosen.
The forces can be calculated as usual, taking only intemrtbetween
atoms belonging to different molecules into account. Patams for the
Lennard—Jones interaction are= 37.3 K, 0 = 3.31A andd = 0.32960.

Periodic boundary conditions are implemented with respetihe centre of
mass of the molecules. If a molecule leaves the system dslitianslated
back into it (as a whole) according to PBC. It is to be noted dedermining
the momentum from the positions tat h andt — h after such a translation
can cause severe errors: this should be dmieremoving the molecule back
into the cell.
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(a) Implement this algorithm for liquid nitrogen.

The program can be checked by verifying whether the kinatiergies
associated with translational and vibrational degreeseddom satisfy
equipartition. The total kinetic enerd¢i: can be determined as in the
argon case by taking adtomic velocities into account. From this, the
temperature can be determined\dg T = 4/5Kt WhereN is the number
of molecules. The translational kinetic enellgy.ns can be calculated by
taking into account the molecular velocities (sums of viéles of the two
atoms) and the temperature can be found from thillgsl = 3/2Kans
The average temperatures should be the same for both presedu

Check whether this requirement is satisfied.

(b) The virial theorem applies as usual — molecular forcesushbe used
and the separation occuring in this theorem is the separdt@ween
the centres of mass of the molecules. The correction termakiated
usingg = 1 for the correlation function beyond the cut-off distanclere
it is assumed thag is independent of distance but also of the angular
configuration of the molecular pairs.

(c) Calculate the pressure also using the atomic forceslu@img the
constraint forces), and compare the result with (b).

(d) Calculate the pressure for various temperatures anditeeen  Cheung
and Powle¥® give extensive data on thermodynamic quantities. The table
below gives some of the data (in reduced units) obtained u@Gd and
Powles.

o T P U
0.6964 2.86 8.35 —17.16
0.6964 1.72 1.29 —1868
0.6220 2.70 2.50 —1582
0.6220 2.17 0.27 —16.30.

8.8 [C] In this problem, we consider the implementation of the Anda meth-
od for simulating a system in the canonical ensemble. Reraethiat the
preferred energy estimator for the Verlet/leap-frog atgan is

E— Z pi(t+h/2) —;p,(t—h/Z)] FV[R®M)],

whereR is the combined position coordinate of the system which ists1ef
particles of masm= 1. In view of the form of this estimator, it seems sensible
to update the momenta at the same time instances for whiclalvelate the
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positions, and it is convenient to define ik component of the momentum
coordinate at time:

pi(t) = [pi(t+h/2) +pi(t—h/2)] /2.
(a) Using the leap-frog/Verlet algorithm, show that
pi(t+h/2) = pi(t) + hF /2.

The refreshed momentp;(t) are drawn from a Maxwell-Boltzmann
distribution, and the momenta at tinhe- h/2, which are needed in the
Verlet/leap-frog algorithm are then calculated using tast formula.

(b) Implement the Andersen update algorithm for argon anupawe the
results with the microcanonical program.

(c) Now suppose that the momenta are refresheavatystep. Show that in
that case we have

ri(t+h) = ri(t) + h?R /24 hg (t),

where(;(t) is thei-th random momentum component generated according
to the Maxwell-Boltzmann distribution. This is a kind of Lgavin
equation. Discuss the difference with the Langevin equoatiescribed in
Section 8.8.

8.9 [C] In this problem we consider the implementation of the Nbs®ver
thermostat in the microcanonical MD simulation for Lennalghes argon
described in Section 8.3. The extension is straightforwaitte equations are
given in Section 8.5.1.1 and 8.5.1.2. You can verify now thatbehaviour of
the Nosé-Hoover thermostat is often nonergodic. Fer1.5 andp = 0.8 the
behaviour is as it should be for coupling const@nt 1. You can check that
the standard deviation in the temperature is in accordaitbebg. (8.81). For
lower temperatures, liké = 0.85, p = 1.067, the temperature exhibits large
oscillations. The period of these oscillations depend®ah

8.10(a) Verify that when we takg = 3N instead ofg = 3N + 1 in the derivation
of the Nosé-Hoover thermostat, the probability densitydonfigurations
(P,R) turns out to be:

1 /2m\Y?  [—sA((PR)(3N+1
p(P,R)=—<k%$> exp{ 0(3Nk)B(T +1)

3N
(b) For this choice, verify that quantities sampled in a datian yield
averages as given in Eq. (8.94).
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8.11 [C] In this problem, a code for evaluating the potential feltthg particles in
a two-dimensional Coulomb (or gravitational) system isal@ped, using the
tree-code method of Section 8.7.2.

Although experienced programmers would be tempted to btalding tree
structures using pointers and recursive programming ferpgioblem, it can
be dealt with using more pedestrian methods. The point istfieasquares
can be coded by two integebX, NYwhich are considered as bit-strings. The
first of these contains information about theoordinate of the square and the
second about thypcoordinate. They are ordered linearly: the leftmost calum
of squares hablX = 0, the rightmost columiX = 2" — 1 etc., and a similar
coding is adopted for the rows. If squares are neighbougst thspective
NX andNY-codes should differ at most by 1 (and they should not be g¢qual
The codes of the parents can be found simply by shifting tteedsiNX and
NY one position to the right (least significant direction) ahdan therefore
easily be checked in the program whether the parents of tharass under
consideration are neighbours or not.

The calculation of the multipole moments in each box [Eql48] is best
done in a loop over the particles, recording its contributmall the multipole
coefficients of the square it belongs to. Also, the calcoltatif the interactions
[Eq. (8.139)] can be done in a loop over the particles, by atweg for each
particle a loop over the interaction list of the square tocliht belongs.

Proceeding this way, it is not necessary to keep for eachrequést of the
particles belonging to it. However, at the finest level, titeriactions between
particles within the same square and between particlesigimbeuring boxes
must be calculated directly so only for the last step do welseeh a list for
each square. If you want to economise on memory, you mighteelinked
list for each square containing the indices of the particieg but for a test
you may use static arrays.

Compare the results for the tree code with those of a direlculeion,
varying the number of terms in the multipole expansion.

8.12 [C] In this problem we consider a simulation of a methane madégsing the
Langevin approach. Methane consists of a carbon atomggstitthe centre
of a tetrahedron whose vertices are occupied by four H atoiitee C—H
bond has a preferred interatomic distance .402 a;. The stretch-potential
associated with the bond length varies as

1
Vstretch= EK(I — |0)2; lo =21044a.
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The force constark has the valu& = 0.30 (in atomic units). This force acts
on both the carbon and the hydrogen atoms and is directed #henC—H
bond.

The preferred H-C—H angle is 108nd the potential for this bending angle
is

Vbena= —A coS(§ — ¢o)%; o = 109,

with a force constanfA = 0.74. This force lies in the H-C-H plane, and
acts on the two H atoms and on the C atom. The forces on the sato
are perpendicular to the C—H bonds, and the bending force@ tatom is
directed along the bisecting line of the H-C—H angle.

These two ‘force fields’, bending and stretching, specifyftirce on each of
the atoms. To find the forces, given the positigrof the carbon atom and the
four positionsry of the hydrogen atoms, you calculate first the forces on the
hydrogen atoms only. The stretch forces can easily be fouedloulating the
vectorrcy = ry —re. The bending force is slightly more difficult. Denoting
the two hydrogen atoms of a H—-C—H chain as H1 and H2, calulate and
rcyi. Then calculate the dot product between these two vectawsn Ehis,
the cosine of the bending angle can be found. Moreover, teetihn of the
force can be found from the cross-productref;; andrcni: the bending
force on H1 is then perpendicular to this cross pro@mcito the vector cys,
and similarly for H2. Knowing the forces on the hydrogen agoiyou can
calculate their sum. The force on the carbon atom is thenlgithp opposite
of this, as the sum of all the inter-particle forces adds ureto.

(a) [C] Write routines for calculating the forces on the atoms agd these
in an ordinary (microcanonical) MD simulation of the atono. dheck the
program, you can put the H-atoms on the vertices of a tetraheslith the
C-atom in the centre. If you release the molecule from thifa@onation
with a CH-distance slightly smaller or larger than the afiilm distance
of 2.104 g, the molecule should stretch and contract isotropicallann
oscillatory fashion.

(b) [C] Keep the temperature of the molecule constant by rescdlieg
velocities after each time step. Determine the averagéeatxgy of the
molecule.

(c) [C] Add a Langevin thermostat to the simulation, for exampledscaling
the velocities after every time step. Use the algorithm mgive the
last section for solving the equations of motion with focti Add
a Langevin random force, drawn from a Gaussian distributiotn a
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width
o?=q/h
to the inter-particle force. Check that the temperaturevisrgby
T=1/(2y).

The temperature is determined from the kinetic energy —we ha
15
T="kgT.
> ks

Determine the average total energy and compare the restlit tiwe
program of (b).
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9
Quantum molecular dynamics

9.1 Introduction

In the previous chapter we considered systems of integagimticles. They were
treated as classical particles for which the interacticiemtial is known. We had to
solve the classical equations of motion to simulate thewiebaof such a system at
some nonzero temperature. Had we added frictional foroesytstem would have
evolved towards the ground state. In this chapter we disoasisods for simulating
interacting atoms and molecules using quantum mecharddallations. In fact,
we consider the nuclei on a classical level but use quantuchamics for the
electronic degrees of freedom. Again, we can use this apbreither to simulate
a system of interacting particles at a finite temperaturéo dnd the ground state
(minimum energy) configurations of solids and of molecules.

In Chapters 4 to 6 we studied methods for solving the elemtrstructure
of molecular and solid state systems with a static configurabf nuclei
(Born-Oppenheimer approximation).  Knowledge of the e@@dt structure
includes knowledge of the total energy. Therefore, by vayyihe positions of
the nuclei, we can study the dependence of the total energhase positions.
The energyE(R1,Rz,...,Ry) as a function of the nuclear positioR is called
the potential surface As a simple example, consider the hydrogen molecule. We
assume that the molecule is not rotating, so that the nuniedion is a vibration
along the molecular axis. The only relevant parameter d#sgrthe relative
positions of the two nuclei is their separatidn The force between the nuclei
is then given byF = —0E(X)/dX (see Figure 9.1). These forces are usually
parametrised and the parameters are fixed by comparisomguatitum mechanical
calculations for a few configurations, or by comparison veitperimental results.
This parametrised form can then be used to calculate themofithe nuclei on a
classical level, for example to find the equilibrium confation of the molecule,
which is the configuration of nuclei which minimises the tetaergy. Thisis called
the method oforce fieldsit is often used by chemists.

282
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Figure 9.1: The effective potential of the hydrogen nuateiie hydrogen molecule as a
function of the separatioX. A harmonic potential and a Morse potential are fitted to the
bottom of the well.

The parametrisation of the forces is often carried out foalkmeviations of
the configuration from the equilibrium conformation, sottttee potential energy
can be approximated quite accurately by harmonic potsntsich as stretching,
bending, and torsional potentials, encountered in Se@&i6rl. The motion can
then be decomposed into normal modes, by defining new cadedinn terms
of which the system can be described as a collection of ureduparmonic
oscillators. This problem then has an analytic quantum m®gichl solution,
leading to discretised energy levels which can be comparithl experiment.
So, although the force field method treats the nuclear matiassically, we can
obtain quantum mechanical solutions for theclear motion from it (within a
Born-Oppenheimer approach).

In our example of the hydrogen molecule we can fit the bottormefpotential
well shown in Figure 9.1 by a harmonic potential. Since thdl ige rather
asymmetric, a more reliable fit is provided by the Morse pitdgnfor which
the spectrum is also known analytically (see problem A.4pr the harmonic
approximationk X?/2, the angular frequency = y/k /m and the spectral levels
are given agiw(n+ 1/2). For the hydrogen molecule, the mass to be used is the



284 Quantum molecular dynamics

reduced mass, which is about half the proton mass (i.e. ®8c8on masses if we
neglect the mass of the two electrons), and we find 0.3850 (in atomic units)
so that the frequency becomegy, = 13.64 x 10'3Hz, to be compared with the
experimental valueyj,, = 12.48x 1013Hz1 T

The harmonic approximation works well for low energies. dtused for
stretch, bend and torsional energies; see also Sectioh &@r higher energies,
anharmonic terms can be included in the potentials — see tirsévpotential in
the hydrogen example. For energies much higher than theéngpbetween the
energy levels, quantum effects do not affect physical ptaseand a fully classical
description is appropriate.

For interacting molecules the force field procedure becamésasible because
we would have to calculate energies and variations in eeerfpr all possible
relative positions and orientations for pairs or sets of amol more molecules,
which becomes exceedingly tedious and (computer) timeurnimgy. Therefore, in
these systems, the intra-molecular interactions are reatey force fields and the
inter-molecular interactions by atomic pair-interaci@s we have seen throughout
the previous chapter. Although this approach yields radwamurate results, in
particular when the density is not too high, the use of thesegmtentials is not
justified for dense systems. Moreover, the energy diffeeruetween different
atomic conformations are often very small, so that high exmuis needed for
predicting equilibrium structures.

To achieve a good accuracy in these cases, it is necessaaictdate forces and
energies from quantum electronic structure calculatighthis is unfeasible for
all possible configurations, we take the more economicatagmbh of calculating
forces and energies only for those configurations which adlgtuoccur in the
simulation. We must therefore perform an electronic stmgctcalculation at
every molecular dynamics time step, and deriveftree on the nuclei from that
calculation. The word force is emphasised because the whettescribed in
the first few chapters of this book aimed at calculating thergies and not the
forces. Of course, it would be possible to derive the forcemfthe energies by
studying the variations in the latter with nuclear posisidmut that would require an
exceedingly large number of energy calculations. It isdvdtierefore to try and
find methods for calculating the forces directly.

The energy of a system of electrons in its ground st@te for a fixed
configuration of nucleiS= (R4,...,Ru), whereR;, is the position of then-th

TIn atomic units, the unit of frequency isc/ap = 4.13414x 10%Hz; a is the fine structure
constant.
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nucleus, is given by

(YsH(S)|Ws)
(Welye)

The (classical) force on nucleuss given as the negative gradieny of the energy

with respect to th&,:

E= 9.1)

__ _ . [(elH(S)¢s)
Fn=—EhE(S) = D”{ (W) }

It should be noted that there is not only the expli@dependence in the
Hamiltonian, but the ground state is evaluated for the Hamign with a particular
configurationS— therefore the ground state also dependS.on

The Hellmann-Feynman theoref® which we discussed for the single-
parameter case in Section 5.3, states that we can negleadapéndence: Wg
is an eigenstate of the Hamiltoni&h(S), we have

((We|We))? OnE =
((Cngis) IH )+ (] (Do) ) + <wG\H\<anG>>} (Wil gie) —

(9.2)

(Wi H] ) <<ane>|we>+<we|<mnwe>>], ©.3)

where we have omitted te@dependence of the Hamiltonian. Except for the term
including (Ys|(OnH)|We), all the terms on the right hand side cancel — this follows
directly from the fact thaH @ = Egs and from the fact that is Hermitian. So

we are left with
Y| (OnH)|Ws) .

{
e (Ws|¥e)
In practice we do not know the exact ground state, but we halg a

variational approximation to it. Therefore, in actual cadtions, the Hellmann-
Feynman theorem does not predict the actual forces exantlytlze variation
of the (approximated) ground state wave function shouldalert into account
as well. Nevertheless, the Hellmann-Feynman theorem id gsée often for
predicting ground state configurations, because the iiociuf other contributions
iS cumbersome.

(9.4)

9.2 The molecular dynamics method

In principle, all the ingredients for a molecular dynamignation using forces
calculated from the quantum electronic structure are admposal. However, at

TWe use the letteBin order to avoid confusion WitR = (ry,...,ry).
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each step in the MD simulation, a full electronic structuaéculation is required,
rendering the method very computer time consuming. In 1@8%,and Parrinello
proposed a method in which not only the nuclear positionsalao the electronic
states are calculated using MD algorithms. This results description of the
system in which the electronic structure does not, in gén@iax completely to the
ground state of the actual configuration of nuclei; howeawercalculated electronic
structure will follow the exact one rather closely. We stag description of the
Car-Parrinello method by recalling the energy functiordlthe Hartree-Fock and
the density functional theory (see Chapters 4 and 5).

The ground state Hartree-Fock wave function Kbelectrons can be written as
the Slater determinant

We(R) = defyk(xi)] (9.5)

1
TUNT| : L
() P2(Xn)  UN(XN)

where theyy are one-electron spin-orbitalg; is the combined spin and orbital
coordinate of particleé. The spin-orbitals should satisfy the orthonormality
requirements

(k) = & (9.6)

The energy is given in terms of thi as

Eue = 3 (NI + 5 3 (AI) — (Bhigp). O

his the one-electron Hamiltonian agds the electron-electron Coulomb repulsion
— see Chapter 4. Minimisation of this expression with respethe (i subject to
the constraint (9.6) requires the Fock equation to be sadisfi

TP = Z/\kl 1] (9.8)
with

1
r—=r'|

P 1 Zn N /
T = _EDZ_;W} "Uk(x)+|zl/ dX g (X)? P(x)—

N
IZ/d’( Wi O —— ) (0. (9.9)
=1

r—r|
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After a unitary transformation of the sétii} (see Section 4.5.2 and problem 4.7),
Eg. (9.8) transforms into

F U = &k (9.10)
Using.Z Y = OEnr/ Sk, we can rewrite this as

OEnF
Ok (X)
The eigenvaluesi are the Fock levels; the energy can be calculated from these.

In density functional theory the energy can be written asatfan of the ground
state density, which in turn is written in terms of the basisctions as

— E(x)- (9.11)

N
n(r) = kz (), (9.12)
=1

assuming that the states are ordered according to incgeasargy. We have seen
already in Chapter 5 that there is no direct expression oftdted energy as a
function of the density, as the form of the kinetic energyctional of the density
is unknown. The energy can however be obtained indirectythe solutiongly of
the Kohn-Sham equations:

—%Dzwk(r) + Vet (1) (1) = & (r) (9.13)

where ,
Verr (1) :\/ion(r)+/d3r’ |rn(_r r)’|

+ Vie[N](r). (9.14)

The exchange correlation potentigl on the right hand side is the derivative of the
exchange correlation energy: with respect to(r).
In terms of theyy, the total DFT energy is written as

Eprr = — Z % (| 0% ) + Z (Wi [Vion| W) +

%/d3rd3r’ %ﬁmm(r). (9.15)

The Kohn-Sham equations can be written as

= Ek‘pk(r)v (916)

i.e. the same form as (9.11).
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Summarising, the total energy, which is the electronic gndeither Eprr or
Enr) plus the electrostatic energy of the nuclei, can be wrigena functional
depending on the orbitalgy and of the nuclear coordinates, collected together
in the variableS

Etot = Etot ({UK},S) (9.17)

where the orbitalgly form an orthonormal set. In both the Hartree-Fock and the
density functional theory approach we minimise this enesgih respect to the
orbitals gk, according to the variational principle. Usually, a finigesks sef x; } is
used, in terms of which the orbitals are given as

Uh(r) = Cuexr(r), (9.18)

so that the energy can be written in terms of@eandS:
Etot = Etot ({Cik },S). (9.19)

As the basis functions are often centred on the atomic nubley may contain an
explicit Sdependence. Car and Parrinello used the form (9.17) [@®)Pwith the
constraint (9.6) as a starting point for finding the equiibr conformation (i.e. the
minimal energy conformation) by locating the minimum of tio¢al energy as a
function of theyx (or theCx) andthe nuclear coordinateés This means that the
electronic structure does not have to be calculated exémtlgach conformation
of nuclei, as both the electronic orbitals and the nucleasitjpms are varied
simultaneouslyn order to locate the minimum.

The minimisation problem of the energy can now be considasedn abstract
numerical problem, and any minimisation algorithm can imgple be applied.
One possible approach is the simulated annealing méthauch requires only
the energy to be calculated — no force calculations are eedelowever,
Car and Parrinello assigned, aside from the time dependehdbe nuclear
coordinates, dictitious time-dependence to the electronic wave functions (or, in
a linear variational calculation, th&y), and constructed a dynamical Lagrangian
including the electronic wave functions and the nucleardioateSwith their time
derivatives as the variables. This leads to a classical améch problem with the
energy (9.17) acting as a potential. If a friction term isitlaglded to the equations
of motion of this classical system, the degrees of freedothoaine to rest after
some time, with values corresponding to the minimum of tlessital potential,
which is the energy of the quantum system at the equilibrionfiguration of the
nuclei. Itis also possible to put the frictional force equetero in order to simulate
the system at a nonzero temperature.
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The Lagrangian of the classical system reads
L({w). 9 =55 e+ > T2 B oS+ Y Aa k). (9:20)
’ 2 Z kTgL ’ ;

U is some small mass (see below), aigis the actual mass of theth nucleus,
with position R,. The last term on the right hand side is necessary to ensure
orthonormality of the, — the/A must always be calculated from this requirement.
Car and Parrinello suggested that this Lagrangian can lmeneteonly for finding
the minimum of the total energy, but also for performing mealecular dynamics
simulations at finite temperature. It will be clear that imgeal, when the nuclei
move, the method might not have produced the minimal enefdleoelectrons
before the next nuclear displacement: the calculatedrelgctstructure will ‘lag
behind’ the nuclear motion. Although this retardation eff@ill occur in reality
(the Born-Oppenheimer approximation neglects the fadtttteelectrons do not
have the opportunity to adapt themselves to the changingauconfiguration at
any time), there is no reason to believe that the retardaffact implied by the
Car-Parrinello Lagrangian is related to real physical biha.

The details of the kinetic energy of the electrons do not enativhat matters
is the fact that the mags used in this kinetic energy should be sufficiently small
to enable the electronic wave function to adapt reasonalely tow the changing
nuclear configurations — this mass should therefore be mowler than the
nuclear masses. The choice of the masis determined by a trade-off between
accuracy and efficiency. If we include friction into the egolas of motion, the
particular values of neither electronic nor nuclear massatser, as we shall always
end up with zero kinetic energy, at the minimum of the totargg of the system
(which is the potential of the Car-Parrinello Lagrangighpugh different choices
of these masses lead to different rates of convergencedswlae energy minimum.

Let us write down the equations of motion for the Car-Pahdreagrangian. We
must take the orthogonality constraint (9.6) into accosinigiLagrange parameters
A (t). The Euler-Lagrange equations now read

OBt

pik = 20 +ZZ/\|<| Wi (r) (9.21)
and JE 9 (Yln)
5 Yttot k|l

The last term on the right hand side of the last equation hasisf the basis
functions do not depend on the nuclear positi@n#s we know the total energy
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in both DFT and HF in terms of the orbitalgx and R, the energy derivatives
occuring in these equations can be evaluated — see the érinse

Instead of assigning a kinetic energy to the orbitalsleading to Eq. (9.21), we
can assign a kinetic energy to the expansion coefficigpntdn that case, Eq. (9.21)

becomes
OEiot

dCrk

If u is allowed to depend onandk, this equation can be made equivalent to (9.21)
but, as argued above, the details of the kinetic energy danatter that much
as long as the electronic degrees of freedom can adapt themde the nuclear
positions.

If a frictional term is added to the equations of motion, thkigon will become
stationary after some time, and the left hand side vaniskesiation (9.21) then
becomes an equation similar to the Fock and the Kohn-Shaatiegs [(9.11) and
(9.16)], except for the eigenvalueg being replaced by the matrix elememtg.
This is precisely the same difference as we have encounitetbd diagonalisation
of the Fock-matrix (see Section 4.5.2 and above)(ffio= 0, Eq. (9.21) reduces to
an eigenvalue equation after an appropriate unitary toamsftion of the sef yx}
and of the Lagrange parametéxg.

The values of the Lagrange parametéig depend on time — they must be
calculated at each MD step such that they guarantee thenortimality constraint
(9.6). This calculational procedure is related to the paldéir integration scheme
used (the Verlet algorithm in our case). In Section 8.6.2 axelencountered this
problem already. Car and Parrinello have used the iter&AKE-algorithm of
Ryckaertet al® (see Section 8.6.3) to solve for thg,. We return to the problem
of calculating the\y; in more detail below.

If the nuclear equilibrium configuration is searched foartshg from an initial
configuration which might be far off the equilibrium, we aileely to end up in a
local energy minimum instead of the global minimum. In thés&, we might use
the simulated annealing metHoathich allows the system to hop over local energy
barriers to arrive at the global minimum.

It is interesting to compare the equations obtained here tivé time-dependent
Hartree-Fock (TDHF) equations. These are obtained fronriati@nal treatment
of the time-dependent Schrodinger equation using Slat&rchinants constructed
from time-dependent spin-orbitals. The time-dependeht@&tnger equation can
be derived as the stationarity condition of the functional

pCr = — +2 Z Ny SsCsi- (9.23)

‘ )
S:/dt/dx W (X, 1) (lﬁE—H>W(X,t) (9.24)
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with X = (Xq,...,Xn). By taking for W(Rt) a Slater determinant with
time-dependent orbitalgi(x,t), the stationarity condition leads to the following
equation for the spin-orbitafs:

2 () = Tl (9.25)

The TDHF equations lead to a conservation law for the ovemiaprix Sq(t) =
(W)W (1)). Hence, if we choose an orthonormal set to start off with-a0, the
set will remain orthonormal in the course of time.

In comparison with the MD equation of motion for the elecspBkg. (9.21), we
see that the second derivative with respect to time is regléy a first order one,
and that there is no Lagrange parameter as a result of théapwaiatrix being
conserved.

Time-dependent Hartree-Fock is used for studying the guardynamics of
scattering processes, for example in nuclear physics astuifies of scattering
of electrons from atoms.

9.3 An example: quantum molecular dynamics for the hydrogen
molecule

In this subsection we work out an application of the CariRalilo method to the
hydrogen molecule in some detail. Our example is based omH#ree-Fock
calculation of the hydrogen molecule considered in Chagteiin particular
problem 4.9. There are two spin-orbitals with opposite smid the same orbital
part. Therefore, the wave function is completely specifigdthe form of this
orbital. We use the GTO basis set of problem 4.9 with eighisbagunctions
Xr, four on each atom.

The molecular dynamics method can be restricted to thereléctstructure part
of the total energy, keeping the nuclear positions fixed. \W/hdk first — later we
shall extend the method to include nuclear displacements.

9.3.1 The electronic structure

The energy can be written as
1
Etot = 2 % Cr hrsCs + rgucrcsctcu <rt |g|su> + X (9-26)

Note that there is no inddxas the two electrons occupy only one orbital. The Fock
matrix F is given by
Frs = hrs + ZCtCu <rt |g|su> (9-27)
u
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(all sums over indices s,t,u run over the basis states, so in our case from 1 to 8).
The normalisation condition for the orbital is

Y CSCe=1 (9.28)

Therefore, the equation of motion for tle (without friction) is given by

S Stu S

- Z[Frs+)\srs]cs- (9.29)
S
We shall use the Verlet algorithm for solving the equatiohsnotion. In this
form, they read fou = 4:

Ci(t+h) =2C () —Cr(t—h) - Z[Frs—F/\Srs]Cs(t)' (9.30)

Suppose we know th€;(t) and theC,(t —h). The solution to the equation of
motion proceeds in two stages. First we calculate

Cr(t+h) = 2C(t) —Cr(t —h) —h* 5 FrCs(t). (9.31)

Now we must add an amourtA SsCs(t) to this solution, where is determined
by the requirement that the normalisation condition (9/&8Yls:

S G (t+h)SCs(t+h) —22 Zsséra +h)SCs(t)+

A? Z SsCs()StSuCu(t) =1 (9.32)

This is a quadratic equation i, of which the lowest positive root is needed.
The Verlet solution of the equation of motion is now fully dahefd.

Modifying the HF program of Chapter 4 to calculate the elsutr structure is
relatively easy, as the Fock matrix and the overlap matexcatculated already in
this program.

— Programming exercise —

Take the program of problem 4.9 and replace the self-camgigtiteration by a
molecular dynamics algorithm with friction, using the \éralgorithm.

A frictional force —yC; is included using the algorithm given in Section 8.4.1.2
in order to let the system evolve towards the energy grouate.st
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Figure 9.2: Evolution of the energy in a Car-Parrinello diation of the electronic structure
of the hydrogen molecule with separati¥n= 1 between the nuclei, with frictional forces
included.

Check A reasonable value for the time step is 0.1 (in atomic units) for
the frictional constany the value 1 (in atomic units) is chosen. In Figure 9.2,
the energy as a function of the ‘time’ is shown. It is seen thata nuclear
separation oX = 1 the energy tends te2.0785476 a.u., the same value as
was found in problem 4.9.

9.3.2 The nuclear motion

In this section we describe the inclusion of the nucleardsrimto the equations
of motion and apply this to the vibration of the hydrogen noale. Essentially,
what we have to do is to calculate the derivative of the totargy with respect
to the nuclear separatiod. The results obtained using the Car-Parrinello HF
method are exactly equivalent to those obtained by the flisdd method as
we have a pair potential only; we describe it here only tostiate the method.
There are two contributions to this derivative. First of &itle energy contains a
Coulomb interaction AX between the two nuclei and the electron Hamiltonian
contains Coulomb attractions between the electrons andutlei, which depend
on X. There is however yet another contribution from the depeoel®f the basis
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functions x; on X: remember the basis functions are centred on the nuclei, so
varying the positions of the latter changes the matrix etegmef the Fock matrix
and the overlap matrix. In the following we shall not distirgh explicitly between
all these contributions, but it is useful to know that cdmitions to the forces
due to the variation of the basis functions with the nuclessitons are called
Pulay forces’ If the basis functions do not depend on the nuclear cooreinats
is the case with plane wave basis sets, which are often usedhjnnction with
pseudopotentials, Pulay forces are absent. We shall nawulaté the derivatives
of the matrix elements of the Fock matrix and the overlap matith respect to
the nuclear separation in the hydrogen molecule.

Expressions for the various matrix elements were given tti@e 4.8. We use
notations similar to those used in that section. The overlapix was given as

m \¥? ap
SG,A;B.B = <1S,G,A|1S,B,B> = <a—"|'B> exp |:_Cf——|—B|RA_ RB|2 ; (933)

and we see that if both basis functions are centred on the saoheus A = B), this

matrix element does not depend ¥nFor two basis functions centred on different

nuclei,|Ra — Rg| = X, and we find

d af

—(1s,a,A|1s,3,B) = —2——X§, agB- 9.34

dX< U ’ 7[37 > Cf—|—B %,A,B.B ( )
The matrix elements of the kinetic energy operator for twaitats centred on

the same atom are again independeniXofand for the elements between basis

functions on different nuclei we have, usiog= af/(a + 3) (see Section 4.8):

1
1s o, A|— =2
< ’ ’ ‘ 2

1s, 3, B> = [30 - 20%X?| Sy ap.e- (9.35)

Taking the derivative with respect ¥ we find

d 1,
&<ls,a,A‘—§D

1s,B,B> _
— 40X Sy ap g+ [30 — 20°X?] iSO,A. 5. (9.36)
AB, dx B,

The Coulomb matrix element is given by

<1s,or,A'zr1
c 'C

156.8) =05 S, apalto (9.37)
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with 6 = 2,/(a + B)/m, t. = (a + B)(PC)? whereP is the point

aRa+ BRp

a-+p
PQ= Rp—Rg, andC is the position of the nucleus — the suma is over the two
nuclei. Fy given in Section 4.8 — its derivative is given by

Fi(t) = et Rl _ZtFO(t) (9.39)

o , (9.38)

for t # 0, andF;(0) = —1/3. Taking the derivative, we obtain for two basis
functions centred on the same nucleus:

d
ax <1s,a A

witht = (a + B)X.
For basis functions centred on different nuclei, we have

1lis, B> — 205, ap R (t)X(a +B) (9.40)

d
ax <1sa A 13,[3,B>_
SaABB) > [Fo(ta) + Fo(t2)]
C
6
a +BSa g8 [Folt)a®+Fy(t2)B%] X (9.41)
where
a®X?
t1=——; 9.42a
s (9.422)
B2x2
t,= . 9.42b
2= 015 (9.42b)
Finally the four-electron matrix element is given by
<Cf,A; V7C|g|B7 B1 57 D> = pSa,A;B,BSy,C;é,DFO(t) (943)
i (@+B)y+9)
a -+ Y+ 2
t=—-—"———(P 9.44
ey gy UL (9.44)
with Rp as given above and
= @7 (9.45)

y+9o
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and

ma+pB+y+9)
From this form it follows directly that

b2 \/ (a+B)(y+90) (9.46)

d d
o (@A V.Cl0B.B:6.0) = Sunss ) SicsoRalt+

d
PSy ABB <&5y.c;5,o> Fo(t)+

(a +B)(y+9) 2(PQ)?
a+pB+y+0 X

PSyApES/c:0Fo(t) (9.47)
where we have used the fact tH&Q) is proportional toX in order to obtain the
last term on the right hand side.

Using these matrix elements, it is possible to constructiéinvatives of the Fock
matrix and of the overlap matrix with respectXo and this gives the force oX
which is needed in the Verlet algorithm. Note that the nucléaetic energy is
given by

)+ (2)

Therefore, in the equation of motion &, half the proton mass (that is the reduced
mass of the two-nuclei) has to be used.

Only the ratio of the masses occurring in the electronic amligar kinetic energy
is relevant — changing the time stlpcorresponds to an overall rescaling of the
masses. In fact, because the mass occurs in the equatiortiohrimocombination
with an acceleration (or, in the kinetic energy, with a vélpsquared), rescaling
the mass by a factds and time with a factor/b does not change the calculated
motion.

Mn

M
Ekin, nucl = 7 =

— 0x2 0.48
7 (9.48)

— Programming exercise —
Extend the program of the previous subsection to includetiodear motion.

Checkl Take the nuclear mass e.g. 1000 times larger than the@ietiass.
The nuclei will move very slowly in comparison with the elexts because they
are so much heavier. If friction is included, the nuclei ddand up with zero
velocity at their equilibrium spacing, which is 4t= 1.3881ag (within the HF
approximation and using exclusively s-basis function$)isTs to be compared
with the experimental value of.401a;. The behaviour oK as a function of
time is shown in Figure 9.3.
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Figure 9.3: The change of the separatibbetween the nuclei of a hydrogen molecule as
a function of time. The number of nuclear integration stegmhiown along thX-axis. The
nuclear integration step size is34(in atomic units). The integration step for the electrons
was Q1. 12000 electron integration steps were carried out. Teet®ins experience a
friction with damping constant= 1, and the nuclei are damped with a friction constant of
5.

Check2 If friction is not included, the nuclei will oscillate arod their
equilibrium separation. Use 1836.15 for the proton masse ffquency
for an initial separation of .B5 Bohr radii is found to be 18 x 10'°Hz, to
be compared with the value B3} x 10¥Hz obtained above from fitting a
parabola to the bottom of the effective potential well indg9.1, and with the
experimental value, which is 148 x 10¥Hz. The parabola was characterised
by a ‘spring constantk = 0.385. The behaviour aK as a function of time is
shown in Figure 9.4.

Check that the results in Figure 9.4 comply with this valugtérthat the time step
in this figure is 4.3 in reduced units).

Itis possible and advisable to use fewer integration stepih€ nuclear equation
of motion than for the electronic one: the nuclei move mucherglowly than
the electrons, and a nuclear displacement is computaltjoegpensive because
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Figure 9.4: The change of the separatibbetween the nuclei of a hydrogen molecule as
a function of time. The number of nuclear integration stegmhiown along thX-axis. The
nuclear integration step size is34(in atomic units). The integration step for the electrons
was Q1. 12000 electron integration steps were carried out. Teet®ins experience a
friction with damping constant = 1 during the first 4000 steps; the nuclei experience no
friction.

the overlap, Hamilton and Fock matrices have to be caladilaggin. As the
nuclei are moving much more slowly than the electrons thissdaot affect the
overall accuracy significantly, provided the number of &@uc integration steps
carried out between two nuclear displacements is smalber &(/M,/u) (see

also above).

*9.4 Orthonormalisation; conjugate gradient and RM-DIIS
techniques

In the previous sections, we have discussed the ‘bare-bddasParrinello
method and applied it to a simple system. There is much more-ta@uantum
molecular dynamics is still a very active fields within cortagional condensed
matter research — and the interested reader is referred texttew papers by Payne
et al,8 and Marx and Huttérfor details. In this section we describe some elements
of the Car-Parrinello method in more detail, and briefly diésca variant of it,
using conjugate gradients (see Section A.4) for minimisitegelectronic energy.
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9.4.1 Orthogonalisation of the electronic orbitals

The orthogonalisation of the electronic orbitals is maimed through the Lagrange
multipliers Ay, whose values therefore vary with time. The procedure toutate
these values depends on the particular integration atgornitsed, which is usually
the Verlet algorithm. In the previous section you have seaa this is done in
the case of one orbital, where only the normalisation mattefor more orbitals,
understanding the different procedures is quite subtle.

In the following we shall use the notation

€= Zﬂﬂk“‘”lﬂ@ (9.49)

for the total energy for a set of orthonormal orbitglg. H stands for the Fock
matrix in HF, and in DFT it is the Kohn-Sham Hamiltonian. Letwrite down the
Verlet equations of motion for the electronic orbitals:

2
Yk(t+h) = 24k (t) — i (t —h) — % (H W — Z/\kl L/—’I) - (9.50)

The — yet unknown — multiplierg\y are symmetricAyq = Ak, and represent
thereforeN (N + 1) /2 independent values, which are determined byNfe+ 1) /2
orthonormality conditions — hence the Lagrange multigliare uniquely defined.
It might therefore be surprising that several differenhogonalisation algorithms
exist® 10 The reason is that a unitary transformation of the set otalgbieaves the
set orthonormal: the séty; } defined by

W= Zukl 17} (9.51)

is orthonormal. Moreover, a unitary transformation leatles charge density
unchanged — remember the DFT energy depends on the dendityoaron the
individual orbitals. Also, the Slater determinants forgthe basis functions in the
Hartree-Fock theory are invariant under unitary transtgioms (see problem 4.7).
It should be noted that such a transformation of theyseis accompanied by a
similarity transform of the Lagrange parameters:

w=" UpAmrldn (9.52)
mn

as can be verified directly from the equation of motion (9.21Different
orthonormalisation algorithms result in sets of orbitaliah span the same space
of functions but which are slightly rotated with respect aule other.
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Such a rotation may have a tremendous effect on the perfaenainthe Verlet
algorithm. To see this, consider a permutation of the dbitahich is a special
case of a unitary transformation), carried out between tiwee tsteps. This
permutation does not affect the density but it may have sstlimas effect on the
integration of the equations of motion: the (fictitious) agties of the permuted
orbitals increase suddenly to values®@th~'), because the permutation disrupts
the smooth evolution of the orbitals! However, if the ratatis always close to the
unit transformation,

U=1+h°A (9.53)

whereA is a Hermitian transformation of order one, varying smopthith time,
the Verlet algorithm will still work: apart from the motiorogerned by the equation
of motion, the algorithm might induce some extra forces Wwitiause the orbitals to
rotate smoothly in Hilbert space, and this latter motion lsardealt with perfectly
by the Verlet algorithm. It is difficult to see whether ortlooglisation algorithms
satisfy these requirements and it is therefore easieststieat the algorithm such
that it is equivalent to the unambiguous time evolution ktesy from the Verlet
algorithm (without extra rotation) to a precision of at feasderh?®, which is the
overall precision of the Verlet algorithm.

A method which is based on the Verlet algorithm and which eslthe/ in
(9.50) by the orthogonality requirements is the iteratilgoathm called SHAKE
by Ryckaertet al.®> which was mentioned in Section 8.6.3. This algorithm was
used in the original work of Car and Parrinelfolt is straightforward and does not
introduce rotations of the set of orbitals. Moreover, ihogonalises the states to
arbitrary precision (depending on the number of iteratipeidormed). For details
we refer to the cited literature.

Most other methods first predict the form of the (orthonodmgl at the next
time step with some precision and then perform an additiontalonormalisation
of these predicted orbitals by constructing orthonormaédr combinations of
them. The idea behind this is that if the prediction is adeyranly few
orthonormalisation iterations are needed. As the Verlgbrithm prescribes an
orthonormalisation by mixing in thej(t) through the Lagrange multipliers [see
Eqg. (9.50)], and not thex(t + h), such a final re-orthonormalisation can only be
justified if the changes involved are of ordet which is the overall accuracy of
the Verlet algorithm for a single step. Therefore theserilyms must first predict
the new values to orde?(h*) and the re-orthonormalisation should yield the new
states lying close to the old states. Note that after eaghostbonormality is then
satisfied to machine precision whereas the error in theratieg algorithm is order
h*.

Let us now consider one such algorithm in detail. Over a titapls the orbitals



