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8

Molecular dynamics simulations

8.1 Introduction

In the previous chapter we saw that the experimental values of physical quantities
of a many-particle system can be found as an ensemble average. Experimental
systems are so large that it is impossible to determine this ensemble average by
summing over all the accessible states in a computer. There exist essentially two
methods for determining these physical quantities as statistical averages over a
restricted set of states: the molecular dynamics (MD) and Monte Carlo (MC)
methods. Imagine that we have a random sample of, say, 107 configurations of
the system which are all compatible with the values of the system parameters. For
such a large number we expect averages of physical quantities over the sample to
be rather close to the ensemble average. It is unfortunatelyimpossible to generate
such a random sample; however, we can generate a sample consisting of a large
number of configurations which are determined successivelyfrom each other and
are hence correlated. This is done in the molecular dynamicsand Monte Carlo
methods. The latter will be described in chapter 10.

Molecular dynamics (MD) is a widely used method for studyingclassical many-
particle systems. It consists essentially of integrating the equations of motion of
the system numerically. It can therefore be viewed as a simulation of the system
as it develops over a period of time. The system moves in phasespace along its
physical trajectory as determined by the equations of motion, whereas in the Monte
Carlo method, it follows a (directed) random walk. The greatadvantage of the MD
method is that it not only provides a way to evaluate expectation values of static
physical quantities; dynamical phenomena, such as transport of heat or charge, or
relaxation of systems far from equilibrium can also be studied.

In this section we discuss the general principles of the molecular dynamics
method. In the following sections more details will be givenand special techniques
will be discussed. There exists a vast research literature on this subject and there
are some review papers and books.1–5
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Consider a collection ofN classical particles in a rectangular volumeL1×L2×
L3. The particles interact with each other, and for simplicitywe shall assume
that the interaction force can be written as a sum over pair forces,F(r), whose
magnitude depends only on the distance,r, between the particle pairs and which
is directed between them (see also the previous chapter). Inthat case the internal
force (i.e. the force due to interactions between the particles) acting on particle
numberi is given as

Fi(R) = ∑
j=1,N;

j 6=i

F(|r i − r j |)r̂ i j . (8.1)

R denotes the position coordinatesr i of all particles in the notation introduced in
Section 7.2.1 (P denotes the momenta);r̂ i j is a unit vector directed alongr j − r i ,
pointing from particlei to particle j. In experimental situations there will be
external forces in addition to the internal ones – examples are gravitational forces
and forces due to the presence of boundaries. Neglecting these forces for the
moment, we can use (8.1) in the equations of motion:

d2r i(t)
dt2

=
Fi(R)

mi
(8.2)

in which mi is the mass of particlei – in this chapter we take the particles identical
unless stated otherwise. Molecular dynamics is the simulation technique in which
the equations (8.2) are solved numerically for a large collection of particles.

The solutions of the equations of motion describe the time evolution of a real
system though obviously the molecular dynamics approach isapproximate for the
following reasons.

• First of all, instead of a quantum mechanical treatment we restrict ourselves to
a classical description for the sake of simplicity. In Chapter 9, we shall describe
a method in which ideas of the density functional description for quantum
many-particle systems (Chapter 5) are combined with the classical molecular
dynamics approach. The importance of the quantum effects depends strongly
on the particular type of system considered and on the physical parameters
(temperature, density,. . . ).

• The forces between the particles are not known exactly: quantum mechanical
calculations from which they can be determined are subject to systematic errors
as a result of the neglect of correlation effects, as we have seen in previous
chapters. Usually these forces are given in a parametrised form, and the
parameters are determined either byab initio calculations or by fitting the
results of simulations to experimental data. There exist systems for which the
forces are known to high precision, such as systems consisting of stars and
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galaxies at large mutual distances and at nonrelativistic velocities where the
interaction is largely dominated by Newton’s gravitational 1/r2 force.

• Another approximation is inherent to most computer simulations aiming at a
description of the real world: the system sizes in such simulations are much
smaller than those of experimental systems. In the limit where the correlation
length is much smaller than the system size this does not matter too much,
and in the opposite regime, in which the correlation length exceeds the system
size we can use the finite size scaling methods discussed in Chapter 7 in order
to extrapolate results for physical quantities in the finitesystem to those of
the infinite system (although second order transitions are seldom studied in
molecular dynamics because of the heavy demands on computing resources).
The finiteness of the system size is felt through the presenceof the boundary.
The convention adopted in the vast majority of molecular simulations is to use
periodic boundary conditions (PBC) as it is assumed that forthese boundary
conditions the behaviour of the system is most similar to that of a system of
the same size embedded in an infinite system. In fact, with periodic boundary
conditions the system of interest is surrounded by similar systems with exactly
the same configuration of particles at any time – see Figure 8.1. The interaction
between two particlesi and j is then given by the following expression:

FPBC(r i − r j) = ∑
n

F

(
∣

∣

∣

∣

∣

r i − r j +
3

∑
µ=1

L µnµ

∣

∣

∣

∣

∣

)

(8.3)

whereL µ are vectors along the edges of the rectangular system volumeand the
first sum on the right hand side is over all vectorsn with integer coefficients
nµ . The forceF is directed along the line connecting particlei and the image
particle r j −∑3

µ=1L µnµ according to the convention of Eq. (8.1). Of course,
calculating terms of this infinite sum until convergence is achieved is a time
consuming procedure and in the next section we shall consider techniques for
approximating this sum efficiently.

• The time average must obviously be evaluated over a finite time. For
liquid argon, which is the most widely studied system in molecular dynamics
because simple Lennard–Jones pair forces yield results which are in very
good agreement with experiment, the typical time step used in the numerical
integration of the equations of motion is equal to about 10−14 seconds, which
means that for the∼ 105 integration steps which can usually be carried out in a
reasonable amount of computer time, the total simulation isrestricted to about
10−9 seconds. The correlation time of the system should therefore be much
smaller than this. There is however not only a limitation in time as a result
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Figure 8.1: Periodic boundary conditions for molecular dynamics. Each particle interacts
not only with every other particle in the system but also withall other particles in the copies
of the system. The arrows from the white particle point to thenearest copies of the other
particles in the system.

of the finite number of integration steps possible, but also because of the finite
size of the system. This might in principle become noticeable when the particles
have travelled on average more than half the linear system size, but in practice
such effects occur at much longer time scales, of the order ofthe recurrence
time, the time after which the system returns to the initial configuration (in
continuum mechanics, this is called thePoincaŕe time).

• The numerical integration algorithm is not infinitely accurate. This forces us
to make some optimum choice between speed and accuracy: the larger the
integration time step, the more inaccurate the results of the simulation. In
fact, the system will follow a trajectory in phase space which deviates from
the trajectory the system would follow in reality. The effect on the physical
quantities as measured in the simulation is of course related to this deviation in
the course of time.

We may summarise by saying that MD is – in principle – a direct simulation
of a many-particle system but we have seen that, just as with any computational
technique in physics, MD simulations must be carried out with considerable care.
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It is furthermore advisable to carry out reference tests forsystems for which exact
results exist or for which there is an extensive literature for comparison.

8.2 Molecular dynamics at constant energy

In the previous section we sketched the molecular dynamics method briefly for
the simplest case in which the equations of motion for a collection of particles
are solved for forces depending on the relative positions ofthe particles only. In
that case energy and momentum are conserved.† Trivially, the particle number
and system volume are conserved too, so the time averages of physical quantities
obtained by this type of simulation are equivalent to averages in the microcanonical
or (NVE) ensemble. In this section we describe the microcanonical MD method in
more detail.

The algorithm of a standard MD simulation for studying systems in equilibrium
is the following:

• Initialise;

• Start simulation and let the system reach equilibrium;

• Continue simulation and store results.

We will now describe these main steps in more detail.
Initialise: The number of particles and the form of the interaction are specified.

The temperature is usually of greater interest than the total energy of the system
and is therefore usually specified as an input parameter. We shall see below how
the system can be pushed toward the desired temperature.

The particles are assigned positions and momenta. If a Lennard–Jones potential
is used, the positions are usually chosen as the sites of a Bravais-fcc lattice,
which is the ground state configuration of the noble gases like argon (although
the Lennard–Jones system is hexagonal close-packed in the ground state6). The
fcc lattice contains four particles per unit cell, and for a cubic volume the
system contains therefore 4M3 particles,M = 1,2, . . . This is the reason why MD
simulations with Lennard–Jones interactions are often carried out with particle
numbers 108, 256, 500, 864, . . .

The velocities are drawn from a Maxwell distribution with the specified
temperature. This is done by drawing thex, y andz velocity component for each
particle from a Gaussian distribution – for thex-component of the velocity this
distribution is exp

[

−mv2
x/(2kBT)

]

. In Section B.3 it is described how random

†The angular momentum is not conserved because of the periodic boundary conditions breaking
the spherical symmetry of the interactions.
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numbers with a Gaussian distribution can be generated. After generating the
momenta, the total momentum is made equal to zero by calculating the average
momentump̄ per particle, and then subtracting an amountp̄ from all the individual
momentapi.

Start simulation and let the system reach equilibrium: The particles being
released from fcc lattice positions, the system is generally not in equilibrium and
during the initial phase of the simulation it is given the opportunity to relax. We
now describe how the integration of the equations of motion is carried out and
how the forces are evaluated. Finally we shall explain how inthis initial phase the
desired temperature is arrived at.

Numerical algorithms for molecular dynamics will be considered in detail in
Section 8.4. Suffice it here to briefly mention the most widelyused algorithm
which is simple and reliable at the same time – the Verlet algorithm – see also
Section A.7.1.3. The standard form of the Verlet algorithm for the integration of
the equation of motion of a single particle subject to a forceF depending only on
the position of the particle reads

r(t +h) = 2r(t)− r(t −h)+h2F[r(t)]/m (8.4)

wherer(t) is the position of the particle at timet = nh (h is the time step;n is an
integer). From now on we choose units such thatm= 1. The error per time step is of
orderh4 and a worst case estimate for the error over a fixed time interval containing
many time steps is of orderh2 (see problem A.3). To start up the algorithm we need
the positions of the particles at two subsequent time steps.As we have only the
initial (i.e. for t = 0) positions and velocity at our disposal, the positions att = h
are calculated as

r(h) = r(0)+hv(0)+
h2

2
F[r(t = 0)] (m≡ 1), (8.5)

with an error of orderh3.
During the integration, the velocities can be calculated as

v(t) =
r(t +h)− r(t −h)

2h
+O(h2). (8.6)

When using periodic boundary conditions in the simulation,we must check for each
particle whether it has left the simulation cell in the last integration step. If this is
the case, the particle is translated back over a lattice vector L µ to keep it inside
the cell (we shall see below that this procedure facilitatesthe common procedure
for evaluating the forces with periodic boundary conditions). The velocity must
obviously be determined before such a translation!
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There exist two alternative formulations of the Verlet algorithm, which are
exactly equivalent to it in exact arithmetic but which are less susceptible to errors
resulting from finite numerical precision in the computer than the original version.
The first of these, theleap-frogform introduces the velocities at time steps precisely
in between those at which the positions are evaluated:

v(t +h/2) = v(t −h/2)+hF[r(t)], (8.7a)

r(t +h) = r(t)+hv(t +h/2). (8.7b)

These steps are then repeated over and over. Note that they must always be applied
in the given order: the second step usesv(t + h/2) which is calculated in the first
step.

Another form is the so-called velocity-Verlet algorithm7 which is also more
stable than the original Verlet form and which, via the definition

v(t) =
r(t +h)− r(t −h)

2h
(8.8)

evaluates velocities and positions at the same time instances:

r(t +h) = r(t)+hv(t)+h2F(t)/2, (8.9a)

v(t +h) = v(t)+h[F(t +h)+F(t)]/2. (8.9b)

This form is most convenient because it is very stable with respect to errors due to
finite precision arithmetic, and it does not require additional calculations in order
to find the velocities. It should be noted that all formulations have essentially the
same memory requirements. It may seem that, as this algorithm needstwo forces
the second step, we need two arrays for these, one containingF(t) and the other
F(t + h). However, the following form of the algorithm is exactly equivalent and
avoids the need for two force arrays:

ṽ(t) = v(t)+hF(t)/2, (8.10a)

r(t +h) = r(t)+hṽ(t), (8.10b)

v(t +h) = ṽ(t)+hF(t +h)/2. (8.10c)

The new forceF(t +h) is calculated between the second and third step.
The force acting on particlei results from the interaction forces between this

particle and all the other particles in the system – usually pair-wise interactions
are used. The calculation of the forces therefore takes a relatively large amount of
time as this requiresO(N2) steps. A problem in the evaluation of the force arises
from the assumption of periodic boundary conditions. Theseimply that the system
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is surrounded by an infinite number of copies with exactly thesame configuration
as in Figure 8.1. A particle therefore interacts not only with each partnerj in the
system cell we are considering but also with the images of particle j in all the copies
of the system. This means that in principle an infinite numberof interactions has
to be summed over. In many cases, the force decays rapidly with distance, and in
that case remote particle copies will not contribute significantly to the force. If the
force between the particles can safely be neglected beyond separations of half the
linear system size, the force evaluation can be carried out efficiently by taking into
account, for each particle in the system, only the interactions with the nearest copy
of each of the remaining particles (see Figure 8.1): each infinite sum over all the
copies is replaced by a single term! This is theminimum image convention. In
formula, for a cubic system cell the minimum image convention reads

rmin
i j = min

n
|r i − r j +nµL µ | (8.11)

with the same notation as in Eq. (8.3), but where the components of nµ assume
the values 0,±1, provided all the particles are kept within the system cell, by
translating them back if they leave this cell. The potentialis no longer analytic in
this convention, but discontinuities will obviously be unimportant if the potential is
small beyond half the linear system size.

Often it is possible to cut the interactions off at a distancercut-off smaller than half
the linear system size without introducing significant errors. In that case the forces
do not have to be calculated for all pairs. However, all pairsmust be considered to
check whether their separation is larger thanrcut-off. In the same paper in which he
introduced the midpoint integration algorithm into MD, Verlet8 proposed keeping a
list of particle pairs whose separation lies within some maximum distancermax and
updating this list at intervals of a fixed number of steps – this number lies typically
between 10 and 20. The radiusrmax is taken larger thanrcut-off and must be chosen
such that between two table updates it is unlikely for a pair not in the list to come
closer thanrcut-off. If both distances are chosen carefully, the accuracy can remain
very high and the increase in efficiency is of the order of a factor of 10 (the typical
relative accuracy in macroscopic quantities in a MD simulation is of order 10−4).

There exists another method for keeping track of which pairsare within a certain
distance of each other: thelinked-cell method. In this method, the system is divided
up into (rectangular) cells. Each cell is characterized by its integer coordinates
IX,IY,IZ in the grid of cells. The cell size is chosen larger than the interaction
range, about the size ofrmax > rcut-off in the Verlet method. If we would have a list
of particles for each cell, we could simply restrict the interactions to particle pairs
in the same, or in neighbouring cells. However, as particleswill leave and enter the
cells, the bookkeeping of these list becomes a bit cumbersome. This bookkeeping



218 Molecular dynamics simulations

can however be done in a very efficient way by using a list of particle indices.
The procedure is reminiscent of the use of pointers in a linked list. We need two
ingredients: we must have a routine which generates a sort oftable containing
information about which particle is in what cell, and we needto organise the force
calculation such that it uses this information.

To be specific, let us assume that there areM ×M×M cells. The particles are
numbered 1 throughN, so each particle has a definite index. We use an integer array
called ‘Header’ which is of sizeM×M×M: Header(IX,IY,IZ) tells us thehighest
particle index to be found in cell IX,IY,IZ. We also introduce an integer array ‘Link’
which is of sizeN. The arrays Header and Link are filled in the following code:
dimension header(M,M,M), link(N)

Set Header (IX,IY,IZ) to 0
Set Link(I) to 0
FORI = 1,N DO

IX = int(M*x(I)/L)+1
IY = int(M*y(I)/L)+1
IZ = int(M*z(I)/L)+1
link(i) = header(IX,IY,IZ)
header(IX,IY,IZ) = I

END FOR

Now, Header contains the highest present in all cells. Furthermore, for particle I,
Link(I) is another particlein the same cell. To find all particles in cell IX, IY,IZ,
we look at Header(IX,IY,IZ) and then move down from particleI to the following
by taking for the next particle the value Link(I). Using thisin the force calculation
leads to the pseudocode:

FOR all cells with indices (IX, IY, IZ) DO
{Fill the list xt, yt and zt with the particles of the central cell}

icnt = 0;
j = Header(IX,IY,IZ);
WHILE (j>0) DO

j = link(j);
icnt = icnt + 1;
xt(icnt) = x(j); yt(icnt) = y(j); zt(icnt) = z(j);
LocNum = icnt;

END WHILE
{Now, LocNum is the number of particles in the central cell}

FOR half of the neighbouring cells DO
Find particles in the same way as central cell
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and append them to the list xt, yt, zt;
END FOR
Calculate Lennard–Jones forces between all particles in the central cell;
Calculate Lennard–Jones forces between particles in central and

neighbouring cells;
END FOR

Note that we loop over onlyhalf the number of neighbouring cells in order to
avoid double counting of particle pairs. The cell method is less efficient than the
neighbour list method as the blocks containing possible interaction candidate for
each particle is substantially bigger than the spheres of the neighbour list. The
advantage of the present method lies in its suitability for aparallel computing – see
Chapter 16.

Cutting off the force violates energy conservation although the effect is small if
the cut-off radius is chosen suitably. To avoid energy conservation violation, the
pair potentialU(r) can be shifted so that it becomes continuous atrcut-off. The
shifted potential can be written in terms of the original oneas

Ushift(r) = U(r)−U (rcut-off) . (8.12)

The force is not affected by this shift – it remains discontinuous at the cut-off and
this gives rise to inaccuracies in the integration. Applying a shift in the force in
addition to the shift in the potential yields9, 10

Uforce shift(r) = U(r)−U (rcut-off)−
d
dr

U (rcut-off)(r − rcut-off) (8.13)

and now the force and the potential are continuous. These adjustments to the
potential can be compensated for by thermodynamic perturbation theory, see
Ref. 11.

Electric and gravitational forces decay as 1/r and they cannot be truncated
beyond a finite range without introducing important errors.These systems will
be treated in Section 8.7.

The time needed to reach equilibrium depends on how far the initial configuration
was from equilibrium, and on the relaxation time (see Section 7.4). To check
whether equilibrium has been reached, it is best to monitor several physical
quantities such as kinetic energy, pressure, etc., and see whether they have levelled
down. This can be judged after completing the simulation by plotting out the values
of these physical quantities as a function of time. It is therefore convenient to save
all these values on disk during the simulation and analyse the results afterwards.
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It is also possible to measure correlation times along the lines of Section 7.4, and
let the system relax for a period of, for example, twice the longest correlation time
measured.

A complication is that we want to study the system at a predefined temperature
rather than at a predefined total energy because temperatureis easily measurable
and controllable in experimental situations. Unfortunately, we can hardly foresee
from the initial configuration at which temperature the system will end up. To arrive
at the desired value of the temperature, we rescale the velocities of the particles a
number of times during the equilibration phase with a uniform scaling factorλ
according to

vi(t) → λvi(t) (8.14)

for all the particlesi = 1, . . . ,N. The scaling factorλ is chosen such as to arrive at
the desired temperatureTD after rescaling:

λ =

√

(N−1)3kBTD

∑N
i=1 mv2

i

. (8.15)

Note the factorN − 1 in the numerator of the square root: the kinetic energy
is composed of the kinetic energies associated with theindependentvelocities,
but as for inter-particle interactions with PBC the total force vanishes, the total
momentum is conserved and hence the number of independent velocity components
is reduced by 3. This argument is rather heuristic and not entirely correct. We shall
give a more rigorous treatment of the temperature calculation in Section 10.7.

After a rescaling the temperature of the system will drift away but this drift will
become less and less important when the system approaches equilibrium. After
a number of rescalings, the temperature then fluctuates around an equilibrium
value. Now the ‘production phase’, during which data can be extracted from the
simulation, begins.

Continue simulation and determine physical quantities: Integration of the
equations of motion proceeds as described above. In this part of the simulation,
the actual determination of the static and dynamic physicalquantities takes place.
We determine the expectation value of a static physical quantity as a time average
according to

A =
1

n−n0

n

∑
ν>n0

Aν . (8.16)

The indicesν label then time steps of the numerical integration, and the firstn0

steps have been carried out during the equilibration. For determination of errors in
the measured physical quantities, see the discussion in Section 7.4.
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Difficulties in the determination of physical quantities may arise when the
parameters are such that the system is close to a first or second order phase
transition (see the previous chapter): in the first order case, the system might be
‘trapped’ in a metastable state and in the second order case,the correlation time
might diverge for large system sizes.

In the previous chapter we have already considered some of the quantities of
interest. In the case of a microcanonical simulation, we areusually interested
in the temperature and pressure. Determination of these quantities enables us to
determine theequation of state, a relation between pressure and temperature, and
the system parameters – particle number, volume and energy(NVE). This relation
is hard to establish analytically, although various approximate analytical techniques
for this purpose exist: cluster expansions, Percus-Yevickapproximation, etcetera.11

The pair correlation function is useful not only for studying the details of the
system but also to obtain accurate values for the macrosopicquantities such as the
potential energy and pressure, as we shall see below. The correlation function is
determined by keeping a histogram which contains for every interval[i∆r,(i+1)∆r]
the number of pairsn(r) with separation within that range. The list can be updated
when the pair list for the force evaluation is updated. The correlation function is
found in terms ofn(r) as

g(r) =
2V

N(N−1)

[ 〈n(r)〉
4πr2∆r

]

. (8.17)

Similar expressions can be found for time-dependent correlation functions – see
refs. 2 and 11.

If the force has been cut off during the simulation, the calculation of average
values involving the potentialU requires some care. Consider for example the
potential energy itself. This is calculated at each step taking only the pairs with
separation within the minimum cut-off distance into account – taking all pairs into
account would imply losing the efficiency gained by cutting off the potential. The
neglect of the tail of the potential can be corrected for by using the pair correlation
function beyondrcut-off:

〈U〉 = 〈U〉cut-off +2π
N(N−1)

V

∫ ∞

rcut-off

r2dr U(r)g(r) (8.18)

where 〈· · ·〉cut-off is the average restricted to pairs with separation smaller than
rcut-off. Of course, we can determine the correlation function forr up to half the
linear system size only because of periodic boundary conditions. Verlet12 has used
the Percus-Yevick approximation to extrapolateg beyond this range. Ofteng is
simply approximated by its asymptotic valueg(r) ≡ 1 for larger.



222 Molecular dynamics simulations

Similarly, the virial equation is corrected for the potential tail:

P
nkBT

= 1− 1
3NkBT

〈

∑
i

∑
j>i

r i j
∂U(R)

∂ r i j

〉

cut-off

− 2πN
3kBTV

∫ ∞

rcut-off

r3 ∂U(r)
∂ r

g(r)dr,

(8.19)
whereg(r) can also be replaced by 1.

The specific heat can be calculated from Lebowitz’ formula, see Eq. (7.37).

8.3 A molecular dynamics simulation program for argon

In the previous section we described the structure of a MD program and here
we give some further details related to the actual implementation. The program
simulates the behaviour of argon. In 1964, Rahman13 published a paper on
the properties of liquid argon – the first MD simulation involving particles with
smoothly varying potentials. Previous work by Alder and Wainwright14 was on
hard sphere fluids. Rahman’s work was later refined and extended by Verlet8 who
introduced several features which are still used to date, aswe have seen in the
previous section.

The Lennard–Jones pair potential turns out to give excellent results for argon:

U(r) = 4ε
[

(σ
r

)12
−
(σ

r

)6
]

. (8.20)

The optimal values for the parametersε and σ are ε/kB = 119.8 K and σ =
3.405Å respectively.

In the initialisation routine, the positions of an fcc lattice are generated. For an
L×L×L system containing 4M3 particles, the fcc lattice constanta is a = L/M.
It may be safe to put the particles not exactly on the boundaryfacets of the system
because as a result of rounding errors it might not always be clear whether they
belong to the system under consideration or a neighbouring copy.

The procedure in Section B.3 for generating random numbers with a Gaussian
distribution should be used in order to generate momenta according to a Maxwell
distribution. First generate all the momenta with some arbitrary distribution width.
Then calculate the total momentumptot and subtract a momentum̄p = ptot/N from
each of the momenta in order to make the total momentum zero. Now the kinetic
energy is calculated and then all momenta are rescaled to arrive at the desired
kinetic energy.

When calculating the forces, the minimum image convention should be adopted.
It is advisable to start without using a neighbour list. For the minimum image
convention it should be checked for each pair(i, j) whether the difference of the
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x-componentsxi −x j is larger or smaller thanL/2 in absolute value. If it is larger,
then an amountL should be added to or subtracted from this difference to transform
it to a value which is smaller thanL/2 (in absolute value). In many codes, this
translation is implemented as follows:

x→ x− [x/L]∗L, (8.21)

where[] denotes the integer part. This procedure is then repeated for the y andz
component. Potential and force may be adjusted according toEqs (8.12) and (8.13).

The equations of motion are solved using the leap-frog or thevelocity form of
the Verlet algorithm. A good value for the time step is 10−14 s which in units of
(mσ2/ε)1/2 is equal to about 0.004. Using the argon mass as the unit of mass,σ
as the unit of distance andτ = (mσ2/ε)1/2 as the unit of time, thex-component of
the force acting on particlei resulting from the interaction with particlej is given
by

F i j
x = (xi −x j)(48r−14

i j −24r−8
i j ) (8.22)

with similar expressions for they- andzcomponents.
After each step in the Verlet/leap-frog algorithm, each particle should be checked

to see whether it has left the volume. If this is the case, it should be translated over
a distance±L along one or more of the Cartesian axes in order to bring it back into
the system in accordance with the periodic boundary conditions.

During equilibration, the velocities (momenta) should be rescaled at regular
intervals. The user might specify the duration of this phaseand the interval between
momentum rescalings.

During the production phase, the following quantities should be stored in a file
at each time step: the kinetic energy, potential energy, andthe virial

∑
i j

r i j F(r i j ). (8.23)

Furthermore, the program should keep a histogram-array containing the numbers
of pairs found with a separation betweenr andr +∆ for, say∆ = L/200 from which
in the end the correlation function can be read off.

– Programming exercise –

Write a program which simulates the behaviour of a Lennard–Jones liquid with the
proper argon parameters given above.

Check1 To check the program, you can use small particle numbers, such as
32 or 108. Check whether the program is time-reversible by integrating for
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Table 8.1: Molecular dynamics data for thermodynamic quantities of the Lennard–Jones
liquid. T0 is the desired temperature;T is the temperature as determined from the
simulation;ρ is the density:ρ = N/V. All values are in reduced units.

ρ(1/σ3) T0(ε/kB) T βP/ρ U(ε)

0.88 1.0 0.990(2) 2.98(2) -5.704(1)
0.80 1.0 1.010(2) 1.31(2) -5.271(1)
0.70 1.0 1.014(2) 1.06(4)(5) -4.662(1)

some time (without rescaling) and then reversing velocities. The system should
then return to its initial configuration (graphical displayof the system might be
helpful).

Check2 The definite check is to compare your results for argon with literature.
A good value for the equilibration time is 10.0τ and rescalings could take place
after every 10 or 20 time steps. A sufficiently long simulation time to obtain
accurate results is 20.0τ (remember the time step is 0.004τ). In table 8.1
you can find a few values for the potential energy and pressurefor different
temperatures. Note that the average temperature in your simulation will not be
precisely equal to the desired value. In Figure 7.1, the paircorrelation function
for ρ = N/V = 1.06 andT = 0.827 is shown.

It is interesting to study the specific heat [Eq. (7.37)] in the solid and in the gas
phase. You may compare the behaviour with that of an ideal gas, cV = 3kB/T per
particle, and for a harmonic solid,cv = 3kBT per particle (this is the Dulong–Petit
law).

Note that phase transitions are difficult to locate, as thereis a strong hysteresis
in the physical quantities there. It is however interestingto obtain information
about the different phases. ForT = 1, ρ = 0.8 the argon Lennard–Jones system is
found in the liquid phase, and forρ = 1.2 andT = 0.5 in the solid phase. The gas
phase is found for example withρ = 0.3 and andT = 3.0. It is very instructive
to plot the correlation function for the three phases and explain how they look.
Another interesting exercise is to calculate the diffusionconstant by plotting the
displacement as a function of time averaged over all particles. For times smaller
than the typical collision time (time of free flight), you should find

〈

x2〉∼ t2, (8.24)
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and this crosses over to diffusive behaviour

〈

x2〉= Dt, (8.25)

with D the diffusion constant. In the solid phase, the diffusion constant is 0. In the
gas phase, the diffusive behaviour sets in at later times than in the fluid.

If the program works properly, keeping a Verlet neighbour list as discussed in the
previous section can be implemented. Verlet8 usedrcut-off = 2.5σ andrmax = 3.3σ .
A more detailed analysis of the increase in efficiency for various values ofrmax with
rcut-off = 2.5σ shows thatrmax = 3.0σ with updating the neighbour list once every
25 integration steps is indeed most efficient.2, 15

– Programming exercise –

Implement the neighbourlist in your program and check whether the results remain
essentially the same. Determine the increase in efficiency.

8.4 Integration methods – symplectic integrators

There exist many algorithms for integrating ordinary differential equations, and a
few of these are described in Appendix A. In this section, we consider the particular
case of numerically integrating the equations of motion fora dynamical system
described by a time-independent Hamiltonian, of which the classical many-particle
system at constant energy is an example. Throughout this section we consider the
equation of motion for a single particle in one dimension – the discussion is easily
generalised to more particles in more dimensions.

The Verlet algorithm is the most popular algorithm for molecular dynamics and
we shall consider it in more detail in the next subsection. Before doing so, we
describe a few criteria which were formulated by Berendsen and Van Gunsteren16

for integration methods for molecular dynamics. First of all, accuracy is an
important criterion: it tells to which power of the time stepnumerical trajectory
will deviate from the exact one after one integration step (see also Appendix A).
Note that the prefactor of this may diverge if the algorithm is unstable (e.g. close
to a singularity of the trajectory). The accuracy is the criterion which is usually
considered in numerical analysis in connection with integration methods.

Two further criteria are related to the behaviour of the energy and other
conserved quantities of a mechanical system which are related to symmetries of
the interactions. Along the exact trajectory, energy is conserved as a result of the
time-translation invariance of the Hamiltonian, but the energy of the numerical
trajectory will deviate from the initial value and this deviation can be characterised
by its drift, a steady increase or decrease, and thenoise, fluctuations on top of
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the drift. Drift is obviously most undesirable. In microcanonical MD we want
to sample the points in phase space with a given energy; thesepoints form a
hypersurface in phase space – the so-calledenergy surface. If the system drifts
away steadily from this plane it is obviously not in equilibrium.

It is very important to distinguish in all these cases between two sources of
error: those resulting from the numerical integration method as opposed to those
resulting from finite precision arithmetic, inherent to computers. For example, we
shall see below that the Verlet algorithm is not susceptibleto energy-drift in exact
arithmetic. Drift will however occur in practice as a resultof finite precision of
computer arithmetic, and although different formulationsof the Verlet algorithm
have different susceptibility to this kind of drift, this depends also on the particular
way in which numbers are rounded off in the computer.

Recently, there has been much interest insymplectic integrators. After
considering the Verlet algorithm in some detail, we shall describe the concept of
symplecticity† and its relevance to numerical integration methods.

8.4.1 The Verlet algorithm revisited

8.4.1.1 Properties of the Verlet algorithm

In this section we treat the Verlet algorithm

x(t +h) = 2x(t)−x(t −h)+h2F[x(t)] (8.26)

in more detail with emphasis on issues which are relevant to MD. A derivation of
this algorithm can be found in Section A.7.1.3. The error perintegration step is
of the orderh4. Note that we take the mass of the particle(s) involved equalto 1.
Unless stated otherwise, we analyse the one-dimensional single-particle version of
the algorithm. The momenta are usually determined as

p(t) = [x(t +h)−x(t −h)]/(2h)+O(h2). (8.27)

Note that there is no need for a more accurate formula, as the accumulated error in
the positions after many steps is also of orderh2. We shall check this below, using
also a more accurate expression for the momenta:16

p(t) = [x(t +h)−x(t−h)]/(2h)− h
12

{F[x(t +h)]−F[x(t −h)]}+O(h3). (8.28)

This form can be derived by subtracting the Taylor expansions for x(t + h) and
x(t −h) aboutt, and approximatingdF[x(t)]/dt by {F[x(t +h)]−F[x(t −h)]}/h.

†Some authors use the term ‘symplecticness’ instead of ‘symplecticity’.
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Figure 8.2: The energy of the harmonic oscillator determined using the various velocity
estimators described in the text.E1 is the energy using (8.29),E2 uses (8.27) andE3 was
calculated using (8.28).

In the leap-frog version, we have the velocities at our disposal for times halfway
between those at which the positions are given:

p(t +h/2) = [x(t +h)−x(t)]/h+O(h2). (8.29)

Each of the expressions (8.27–8.29) for the momentum gives rise to a different
expression for the energy.

We first analyse the different ways of calculating the total energy for the simple
case of the one-dimensional harmonic oscillator

H = (p2 +x2)/2 (8.30)

and we can use either of the formulae (8.27–8.29) for the momentum. In Figure 8.2
the different energy estimators are shown as a function of time for the harmonic
oscillator which is integrated using the Verlet algorithm with a time steph = 0.3 –
this is to be compared with the periodT = 2π of the motionx(t) = cos(t) (for
appropriate initial conditions). It is seen that the leap-frog energy estimator is an
order of magnitude worse than the other two. This is not surprising, since the fact
that the velocity is not calculated at the same time instantsas the positions results
in deviation of the energy from the continuum value of orderh instead ofh2 when
using (8.27). The energy estimator using third order momenta according to (8.28)
is better than the second order form. Note that the error in the position accumulates
in time to giveO(h2) (see problem A.3), so that there is no point in calculating
the momenta with a higher order of accuracy, as this will not yield an order of
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magnitude improvement. The fact that the error for the thirdorder estimator is
about a factor of 3 better than that of the second order one forthe harmonic
oscillator does therefore not indicate a systematic trend.More importantly, the
error in both estimators (8.27) and (8.28) scales indeed ash2. In the following
we determine momenta according to Eq. (8.27). In the leap-frog version the
momentum estimator is

p(t) = [p(t +h/2)+ p(t −h/2)]/2+O(h2). (8.31)

The results for the various energy estimators can be obtained by solving the
harmonic oscillator in the Verlet algorithm analytically.The ‘Verlet harmonic
oscillator’ reads

x(t +h) = 2x(t)−x(t −h)−h2x(t). (8.32)

If we substitutex(t) = exp(iωt) into the last equation, we obtain

cos(ωh) = 1−h2/2 (8.33)

and this defines a frequencyω differing an amount of orderh2 from the angular
frequencyω = 1 of the exact solution. The difference between the numerical and
the exact solution will therefore show a slow beat.

A striking property of the energy determined from the Verlet/leap-frog solution
is that it does not show any drift in the total energy (in exactarithmetic). This
stability follows directly from the fact that the Verlet algorithm is time-reversible,
which excludes steady increase or decrease of the energy forperiodic motion.
In a molecular dynamics simulation, however, the integration time, which is the
duration of the simulation, is much smaller than the period of the system, which
is thePoincaŕe time, that is the time after which the system returns to its starting
configuration. The error in the energy might therefore grow steadily during the
simulation. It turns out, however, that the deviation of theenergy remains bounded
in this case also, as the Verlet algorithm possesses an additional symmetry, called
symplecticity. Symplecticity will be described in detail in Section 8.4.2. Here
we briefly describe what the consequences of symplecticity are for an integration
algorithm. Symplecticity gives rise to conserved quantities, and in particular, it can
be shown17 that a discrete analogue of the total energy is rigorously conserved (in
exact arithmetic). It turns out that this discrete energy deviates from the continuum
energy at most an amount of orderhk, for some positive integerk. Therefore, the
energy cannot drift away arbitrarily and it follows that thenoise remains bounded.

To illustrate this point we return to the harmonic oscillator. In this particular
case we can actually determine the conserved discrete energy. In the leap-frog
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formulation:

p(t +h/2) = p(t −h/2)−hx(t); (8.34a)

x(t +h) = x(t)+hp(t +h/2), (8.34b)

it is equal to18

HD =
1
2

[

p(t −h/2)2 +x(t)2−hp(t −h/2)x(t)
]

. (8.35)

The fact that this quantity is conserved can also be checked directly using (8.34b).
This energy is equal to 1/2− h2/8 for the solutioncos(ωt) with ω given in
Eq. (8.33). For general potentials, the discrete energy is not known.

As mentioned before, the absence of drift in the energy in thecase of the
harmonic oscillator can be explained by the time-reversibility of the Verlet
algorithm, and comparisons with Runge-Kutta integrators for example, which
are in general not time-reversible for potentials such as the harmonic oscillator
do not demonstrate the necessity for using a symplectic algorithm convincingly.
Symplecticity does however impose a restriction on the noise, but time-reversibility
does not.

Symplectic integrators are generally recommended for integrating dynamical
systems because they generate solutions with the same geometric properties in
phase space as the solutions of the continuum dynamical system. The fact that
the deviation of the energy is always bounded is a pleasant property of symplectic
integrators. Symplectic integrators are considered in more detail in Section 8.4.2.

Finite precision of computer arithmetic obviously does notrespect the symplectic
geometry in phase space. Hockney and Eastwood19 observed that when numbers
are rounded off properly in the computer, the system tends toheat up because the
rounding effects can be viewed as small random forces actingon the particles. If
real numbers are systematically truncated to finite precision numbers, the system
cools down slowly. Both effects are clearly signs of nonsymplectic behaviour.

Several classes of symplectic integrators with explicit formulas for different
orders of accuracy have been found. Runge–Kutta– Nystrom integrators (not
to be confused with ordinary Runge–Kutta algorithms) have been studied by
Okunbor and Skeel.20 Yoshida21 and Forest22 have considered Lie-integrators.
Their approach follows rather naturally from the structureof the symplectic
group, as we shall see in Section 8.4.2.†

†Gear algorithms16, 23, 24 have been fashionable for MD simulations. These are predictor-
corrector algorithms requiring only one force evaluation per time step. Gear algorithms are not
symplectic and they are becoming less popular for that reason.
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Let us make an inventory of relevant symmetry properties of integrators.
First of all, time-reversibility is important. If it is present in the equations of
motion, as is usually the case in MD, it is natural to require it in the integration
method. Another symmetry is phase space conservation. Thisis a property of
the trajectories of the continuum equations of motion – thisproperty is given by
Liouville’s theorem – and it is useful to have our numerical trajectories obeying
this condition too (note that time-reversibility by itselfdoes not guarantee phase
space conservation). The most detailed symmetry requirement is symplecticity,
which will be considered in greater detail below (Section 8.4.2). This incorporates
phase space conservation and conservation of a number of conserved quantities,
the so-calledPoincaŕe invariants. The symplectic symmetry properties can also
be formulated in geometrical terms as we shall see below. Most important
for molecular dynamics is the property that the total energyfluctuates within
a narrow range around the exact one. Some comparison has beencarried out
between nonsymplectic phase space conserving and symplectic integrators,25 and
this gave no indication of the superiority of symplectic integrators above merely
phase-space conserving ones. As symplectic integrators are not more expensive
to use than nonsymplectic time-reversible ones, their use is recommended as the
safest option. Investigating the merits of the various classes of integration methods
for microcanonical molecular dynamics is a fruitful area for future research.

8.4.1.2 Frictional forces

Later we shall encounter extensions of the standard MD method where a frictional
force is acting on the particles along the direction of the velocity. The Verlet
algorithm can be generalised to include such frictional forces and we describe this
extension for the one-dimensional case which can easily be generalised to more
dimensions. The continuum equation of motion is

ẍ = F(x)− γ ẋ, (8.36)

and expandingx(h) andx(−h) aroundt = 0 in the usual way (see Section A.7.1.3)
gives

x(h) = x(0)+hẋ(0)+h2 [−γ ẋ(0)+F(0)]/2+h3...
x(0)/6+O(h4) (8.37a)

x(−h) = x(0)−hẋ(0)+h2 [−γ ẋ(0)+F(0)]/2−h3...
x(0)/6+O(h4). (8.37b)

Addition then leads to

x(h) = 2x(0)−x(−h)+h2 [−γ ẋ(0)+F(0)]+O(h4) (8.38)
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whereẋ(0) remains to be evaluated. If we write

ẋ(0) = [x(h)−x(−h)]/(2h)+O(h2), (8.39)

and substitute this into (8.38), we obtain

(1+ γh/2)x(h) = 2x(0)− (1− γh/2)x(−h)+h2F(0)+O(h4). (8.40)

A leap-frog version of the same algorithm is

x(h) = x(0)+hp(h/2); (8.41a)

p(h/2) =
(1− γh/2)p(−h/2)+hF(0)

1+ γh/2
. (8.41b)

If the massm is not equal to unity, the factors 1±γh/2 are replaced by 1±γh/(2m).
It is often useful to simulate the system with a prescribed temperature rather

than at constant energy. In section 8.5 we shall discuss a constant-temperature MD
method in which a time-dependent friction parameter occurs, obeying a first order
differential equation:

ẍ(t) = −γ(t)ẋ(t)+F[x(t)] (8.42a)

γ̇(t) = g[ẋ(t)]. (8.42b)

The solution can conveniently be presented in the leap-frogformulation. As the
momentum is given at half-integer time steps in this formulation, we can solve for
γ in the following way:

γ(h) = γ(0)+hg[p(h/2)]+O(h2), (8.43)

and this is to be combined with Eqs. (8.41). Velocity-Verletformulations [Eqs.
(8.9)] for equations of motions including friction terms can be found
straightforwardly. This is left as an exercise to the reader– see also Ref. 26.

*8.4.2 Symplectic geometry – symplectic integrators

In recent years, major improvement has been achieved in understanding the
merits of the various methods for integrating equations of motion which can
be derived from a Hamiltonian. This development started in the early eighties
with the observations made independently by Ruth27 and Feng28 that methods
for solving Hamiltonian equations of motion should preserve the geometrical
structure of the continuum solution in phase space. This geometry is the so-called
symplectic geometry. Below we shall explain what this geometry is about, and
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what the properties of symplectic integrators are. In Section 8.4.3 we shall see
how symplectic integrators can be constructed. We restrictourselves again to
a two-dimensional phase space (one particle moving in one dimension) spanned
by the coordinatesp andx, but it should be realised that the analysis is trivially
generalised to arbitrary numbers of particles in higher dimensional space with
phase space points(p1, . . . ,pm, r1, . . . , rm).† The equations of motion for the
particle are derived from a Hamiltonian which for a particlemoving in a potential
(in the absence of constraints) reads

H (p,x) =
p2

2
+V(x). (8.44)

The Hamilton equations of motion are then given as

ṗ = −∂H (p,x)
∂x

(8.45a)

ẋ =
∂H (p,x)

∂ p
(8.45b)

It is convenient to introduce the combined momentum-position coordinatez =
(p,x), in terms of which the equations of motion read

ż= J∇H (z) (8.46)

whereJ is the matrix

J =

(

0 −1
1 0

)

(8.47)

and∇H (z) = (∂H (z)/∂ p,∂H (z)/∂x).‡

Expanding the equation of motion (8.46) to first order, we obtain the time
evolution of the pointz to a new point in phase space:

z(t +h) = z(t)+hJ∇zH [z(t)]. (8.49)

The exact solution of the equations of motion can formally bewritten as

z(t) = exp(tJ∇zH )[z(0)] (8.50)

†Although we use the notationr i for the coordinates, they may be generalised coordinates.
‡In more than one dimension, the vectorz is defined as(p1, . . . , pN,x1, . . . ,xN), and the matrixJ

reads in that case

J =

(

0 −I
I 0

)

(8.48)

whereI is theN×N unit matrix.
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where the exponent is to be read as a series expansion of the operator tJ∇zH .
This can be verified by substituting Eq. (8.50) into (8.46). This is a one-parameter
family of mappings with the timet as the continuous parameter. The first order
approximation to (8.50) coincides with (8.49).

Now consider a small region in phase space located atz= (p,x) and spanned by
the infinitesimal vectorsδza andδzb. The areaδA of this region can be evaluated
as the cross product ofδza andδzb which can be rewritten as†

δA = δza×δzb = δza · (Jδzb). (8.51)

It is now easy to see that the mapping (8.50) preserves the area δA. It is sufficient
to show that its time derivative vanishes fort = 0, as for later times the analysis can
be translated to this case. We have

dδA
dt

∣

∣

∣

∣

t=0
=

d
dt

{[

etJ∇zH (δza)
]

·
[

JetJ∇zH (δzb)
]}

t=0
=

[J∇zH (δza)] ·
(

Jδzb
)

+(δza) ·
[

JJ∇zH (δzb)
]

. (8.52)

We can findH (δza,b) using a first order Taylor expansion:

H (δza) = H (z+ δza)−H (z) = δza ·∇zH (z), (8.53)

and similar forH (δzb). This leads to the form

dδA
dt

∣

∣

∣

∣

t=0
= −

(

LTδza) ·
(

Jδzb
)

− (δza) ·
(

JLTδzb
)

(8.54)

whereL is the Jacobian matrix of the operatorJ∇zH :

Li j = ∑
k

Jik
[

∂ 2
H (z)/∂zk∂zj

]

=

(

−Hpx −Hxx

Hpp Hpx

)

. (8.55)

HereHxx denotes the second partial derivative with respect tox etcetera. It is easy
to see that the matrixL satisfies

LTJ+JL = 0, (8.56)

where LT is the transpose ofL, and hence from (8.54) the areaδA is indeed
conserved.

†Note that the area can be negative: it is anorientedarea. In the language of differential geometry
this area is called atwo-form.
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Figure 8.3: The area conservation law for a symplectic flow. The integral
∮

pdxfor any loop
around the tube representing the flow of a closed loop in thep,x plane remains constant.
This integral represents the area of the projection of the loop onto thexp plane. Note that
the loops do not necessarily lie on a plane of constant time.

We can now define symplecticity in mathematical terms. The Jacobi matrixSof
the mapping exp(tJ∇H) is given asS= exp(tL). This matrix satisfies the relation:

STJS= J. (8.57)

Matrices satisfying this requirement are calledsymplectic. They form a Lie group
whose Lie algebra is formed by the matricesL satisfying (8.56). General nonlinear
operators are symplectic if their Jacobi matrix is symplectic.

In more than two dimensions the above analysis can be generalised foranypair
of canonical variablespi ,xi – we say that phase space area is conserved for any
pair of one-dimensional conjugate variablespi ,xi . The conservation law can be
formulated in an integral form;29 this is depicted in Figure 8.3. In this picture the
three axes correspond top, x andt. If we consider the time evolution of the points
lying on a closed loop in thep,x plane, we obtain a tube which represents the flow
in phase space. The area conservation theorem says thatany loop around the tube
encloses the same area

∮

pdx. In fact, there exists a similar conservation law for
volumes enclosed by the areas of pairs of canonical variables – these volumes are
called thePoincaŕe invariants. For the particular case of the volume enclosed by
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areas ofall the pairs of canonical variables, we recover Liouville’s theorem which
says that the volume in phase space is conserved. Phase spacevolume conservation
is equivalent to the Jacobi determinant of the time evolution operator in phase space
being equal to 1 (or−1 if the orientation is not preserved). For two-dimensional
matrices, the Jacobi determinant being equal to 1 is equivalent to symplecticity
as can easily be checked from (8.57). This is also obvious from the geometric
representation in Figure 8.3. For systems with a higher-dimensional phase space,
however, the symplectic symmetry is a more detailed requirement than mere phase
space conservation.

We have seen that symplecticity is a symmetry of Hamiltonianmechanics in
continuum time; now we consider numerical integration methods for Hamiltonian
systems (discrete time). As mentioned above, it is not clearwhether full
symplecticity is necessary for a reliable description of the dynamics of a system
by a numerical integration. However, it will be clear that the preservation of the
symmetries present in continuum time mechanics is the most reliable option. The
fact mentioned above that symplecticity implies conservation of the discrete version
of the total energy is an additional feature in favour of symplectic integrators for
studying dynamical systems.

It should be noted that symplecticity does not guarantee time reversibility or
vice versa. Time reversibility shows up as the Hamiltonian being invariant when
replacingp by −p, and a Hamiltonian containing odd powers ofp might still be
symplectic.

*8.4.3 Derivation of symplectic integrators

The first symplectic integrators were found by requiring that an integrator of some
particular form be symplectic. The complexity of the resulting algebraic equations
for the parameters in the integration scheme was found to increase dramatically
with increasing order of the integrator. Later Yoshida21 and Forest22 developed a
different scheme for finding symplectic integrators, and inthis section we follow
their analysis.

Consider a Hamiltonian of the simple form:

H = T(p)+U(x) (8.58)

(we still restrict ourselves to a particle in one dimension –results are easily
generalised). In terms of the variablez= (p,x) the equations of motion read

dz
dt

=

(

−∂H

∂x
,
∂H

∂ p

)

=

(

−∂U(x)
∂x

,
∂T(p)

∂ p

)

=

J∇H (z) ≡ T̃(z)+Ũ(z), (8.59)
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where in the last expression the operatorJ∇H , which acts onz= (p,x), is split
into the contributions from the kinetic and potential energy respectively:

T̃(z) =

(

0,
∂T(p)

∂ p

)

(8.60a)

Ũ(z) =

(

−∂U(r)
∂ r

,0

)

. (8.60b)

T̃ andŨ are therefore also operators which map a pointz= (p,x) in phase space
onto another point in phase space.

As we have seen in the previous section, the exact solution of(8.59) is given as

z(t) = exp(tJ∇H)[z(0)] = exp[t(T̃ +Ũ)][z(0)]. (8.61)

The term exp(tJ∇H) is a time evolution operator. It is a symplectic operator, asare
exp(tT̂) and exp(tÛ) since these can both be derived from a Hamiltonian (for a free
particle and a particle with infinite mass respectively).

An n-th order integratorfor time steph is now defined by a set of numbersak,bk,
k = 1, . . . ,m, such that

m

∏
k=1

exp(akhT̃)exp(bkhŨ) = exp(hJ∇H)+O(hn+1). (8.62)

Since the operators exp(akhT̃) and exp(bkhŨ) are symplectic, the integrator
(8.62) is symplectic too. The difference between the integrator and the exact
evolution operator can be expressed in Campbell–Baker–Haussdorff (CBH)
commutators: ifeC = eAeB then

C = A+B+[A,B]/2+([A, [A,B]]+ [B, [B,A]])/12+ · · · (8.63)

where the dots represent higher order commutators. This formula can be derived by
writing exp(tA)exp(tB) = exp[t(A+ B)+ ∆], expanding the operator∆ in powers
of t and equating equal powers oft on the left and right hand sides of the equality
– see Ref. 30. Applying this formula withA = hT̃ andB = hŨ to increasing orders
of commutators, we find

exp(hJ∇H) = exp(hT̃)exp(hŨ)+O(h2) (8.64a)

exp(hJ∇H) = exp(hT̃/2)exp(hŨ)exp(hT̃/2)+O(h3) (8.64b)

etc.,

but the extra terms are often tedious to find. AsT̃ andŨ appear in the exponent,
these expressions do not seem very useful. However, as it follows directly from
Eq. (8.60) that applying̃T andŨ more than once gives zero, we have simply

exp(ahT̃) = 1+ahT̃ (8.65)
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and similarly for exp(bhŨ). Therefore, the first order integrator is

p(t +h) = p(t)−h{∂U [x(t)]/∂x} ; (8.66a)

x(t +h) = x(t)+h{∂T[p(t +h)]/∂ p} (8.66b)

which is recognised as the Verlet algorithm (though with a less accurate definition
of the momentum).

The second order integrator is given by

p(t +h/2) = p(t)−h
{

∂Ũ [x(t)]/∂x
}

/2; (8.67a)

x(t +h) = x(t)+h
{

∂ T̃[p(t +h/2)]/∂ p
}

; (8.67b)

p(t +h) = p(t +h/2)−h
{

∂Ũ [x(t +h)]/∂x
}

/2. (8.67c)

Applying this algorithm successively, the first and third step can be merged into
one, and we obtain precisely the Verlet algorithm in leap-frog form with a third
order error in the time steph. This error seems puzzling since we know that the
Verlet algorithm gives positions with an error of orderh4 and momenta with an
orderh2 error. The solution to this paradox lies in the interpretation of the variable
p. If at time t, p(t) is the continuous time derivative of the continuum solution
x(t), the above algorithm gives usx(t + h) and p(t + h) both with errorh3. If
howeverp(t) is defined as[x(t +h)−x(t −h)]/(2h), the algorithm is equivalent to
the velocity-Verlet algorithm and hence gives the positions x(t +h) with an error of
orderh4 and p(t + h) is according to its definition given with ah2 error. The way
in which initial conditions are given define which case we arein.

Finding higher order algorithms is nontrivial as we do not know the form of the
higher order expansion terms of the operators exp(hT̃) and exp(hŨ). However,
Yoshida21 proposed writing the fourth order integrator in the following form:

S2(αh)S2(βh)S2(αh) (8.68)

whereS2 is the second order integrator, and he fixedα andβ by the requirement
that the resulting expression is equal to the continuum operator to fourth order.
Higher order integrators were found similarly. The generalresult can be written as

for k = 1 ton do

x(k) = x(k−1) −hak∂T[p(k−1)]∂ p (8.69)

p(k) = p(k−1) −hbk∂U [x(k)]∂x

end
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and the numbersak andbk can be found in Yoshida’s paper. For the fourth order
case, they read

a1 = a4 = 1/[2(2−21/3)]; a2 = a3 = (1−21/3)a1 (8.70a)

b1 = b3 = 2a2; b2 = −21/3b1; b4 = 0. (8.70b)

From Yoshida’s derivation it follows that there exists a conserved quantity which
acts as the analog of the energy. The integrator is certainlynot the same as the
exact time evolution operator, but it deviates from the latter only by a small amount.
Writing the integratorS(h) as

S(h) = exp(hAD) (8.71)

we have a new operatorAD which deviates from the continuum operatorA only by
an amount of orderhn+1, as the difference can be written as a sum of higher order
CBH commutators. It will be shown in problem 8.5 that for an operator of the form
exp(tAD) which is symplectic for allt, there exists a HamiltonianHD which is the
analogue of the Hamiltonian in the continuum time evolution. This means that, if
we knowHD (which is usually impossible to find, except for the trivial case of the
harmonic oscillator), we could either use the integrator (8.71) to give us the image
at timeh, or the continuum solution of the dynamical system with HamiltonianHD

for t = h: both mappings would give identical results. The HamiltonianHD(z) is
therefore a conserved quantity of the integrator, and it differs from the energy by an
amount of orderhn+1. The existence of such a conserved quantity is also discussed
in refs. 17, 18 and 31.

8.5 Molecular dynamics methods for different ensembles

8.5.1 Constant temperature

In experimental situations the total energy is often not a control variable as usually
the temperature of the system is kept constant. We know that in the infinite system
the temperature is proportional to the average kinetic energy per degree of freedom
with proportionality constantkB/2, and therefore this quantity is used in MD to
calculate the temperature, even though the system is finite (see Section 10.7 for a
discussion on temperature for a finite system). As the total energy remains constant
in the straightforward implementation of the molecular dynamics paradigm as
presented in the previous sections, the question arises howwe can perform MD
simulations at constant temperature or pressure. We start with a brief overview
of the various techniques which have been developed for keeping the temperature
constant. Then we shall discuss the most succesful one, the Nosé-Hoover method,
in greater detail.
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8.5.1.1 Overview of constant temperature methods

Experience from real life is a useful guide to understand procedures for keeping
the temperature at a constant value. In real systems, the temperature is usually
kept constant by letting the system under consideration exchange heat with a much
larger system in equilibrium – the heat bath. The latter has adefinite temperature
(it is in equilibrium) and the smaller system which we consider will assume the
same temperature, as it has a negligible influence on the heatbath. Microscopically
the heat exchange takes place through collisions of the particles in the system with
the particles of the wall which separates the system from theheat bath. If, for
example, the temperature of the heat bath is much higher thanthat of the system
under consideration, the system particles will on average increase their kinetic
energy considerably in each such collision. Through collisions with their partners
in the system, the extra kinetic energy spreads through the system, and this process
continues until the system has attained the temperature of the heat bath.

In a simulation we must therefore allow for heat flow from and to the system in
order to keep it at the desired temperature. Ideally, such a heat exchange leads to
a distributionρ of configurations according to the canonical ensemble, irrespective
of the number of particles:

ρ(R,P) = e−H (R,P)/(kBT), (8.72)

but some of the methods described below yield distributionsdiffering from this by
a correction of order 1/Nk, k > 0. In comparison with the experimental situation,
we are not confined to allowing heat exchange only with particles at the boundary:
any particle in the system can be coupled to the heat bath.

Several canonical MD methods have been developed in the past. In 1980
Andersen32 devised a method in which the temperature is kept constant by
replacing every so often the velocity of a randomly chosen particle by a velocity
drawn from a Maxwell distribution with the desired temperature. This method
is closest to the experimental situation: the velocity alterations mimic particle
collisions with the walls. The rate at which particles should undergo these changes
in velocity influences the equilibration time and the kinetic energy fluctuations. If
the rate is high, equilibration will proceed quickly, but asthe velocity updates are
uncorrelated, they will destroy the long time tail of the velocity autocorrelation
function. Moreover, the system will then essentially perform a random walk
through phase space, which means that it moves relatively slowly. If on the other
hand the rate is low, the equilibration will be very slow. TherateRcollisions for which
wall collisions are best mimicked by Andersen’s procedure is given by

Rcollisions∼
κ

kBn1/3N2/3
(8.73)
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whereκ is the thermal conductivity of the system, andn, N the particle density and
number respectively32 (see problem 8.6). Andersen’s method leads to a canonical
distribution for allN. The proof of this statement needs some theory concerning
Markov chains and is therefore postponed to Section 15.4.3.1, where we consider
the application of this method to lattice field theories.

For evaluating equilibrium expectation values for time- and momentum-indep-
endent quantities, the full canonical distribution (8.72)is not required: a canonical
distribution in the positional coordinates

ρ(R) = e−U(R)/(kBT) (8.74)

is sufficient since the momentum part can be integrated out for momentum-
independent expectation values. For a sufficiently large system the total kinetic
energy of a canonical system will evolve towards its equilibrium value 3NkBT/2
and fluctuations around this value are very small. We might therefore enforce the
kinetic energy to have a value exactly equal to the one corresponding to the desired
temperature. This means that we replace the narrow distribution of the kinetic
energy by a delta-function

ρ (Ekin) → δ [Ekin −3(N−1)kBT/2] . (8.75)

The simplest way of achieving this is by applying a simple velocity rescaling
procedure as described in the previous section [Eqs. (8.14)and (8.15)] afterevery
integration step rather than occasionally:

pi → pi

√

3
2(N−1)kBT

Ekin
. (8.76)

This method can also be derived by imposing a constant kinetic energy via a
Lagrange multiplier term added to the Lagrangian of the isolated system.33 It turns
out34 that this velocity rescaling procedure induces deviationsfrom the canonical
distribution of order 1/

√
N, whereN is the number of particles.

Apart from the rescaling method, which is ratherad hoc, there have been attempts
to introduce the coupling via an extra force acting on the particles with the purpose
of keeping the temperature constant. This force assumes theform of a friction
proportional to the velocity of the particles, as this is themost direct way to affect
velocities and hence the kinetic energy:

mr̈ i = Fi(R)−ζ (R,Ṙ)ṙ i . (8.77)

The parameterζ acts as a friction parameter which is the same for all particles and
which will be negative if heat is to be added and positive if heat must be drained
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from the system. Various forms forζ have been used, and as a first example we
consider33, 35

ζ (R,Ṙ) =
dV(R)

dt

∑i ṙ2
i

. (8.78)

This force keeps the kinetic energyK = m∑i v
2
i /2 constant as can be seen using

(8.77). From this equation, we obtain

∂K
∂ t

∼ ∑
i

vi v̇i = −∑
i

vi
[

∇iV(R)−ζ (R,Ṙ)vi
]

=
dV
dt

−∑
i

ṙ2
i ζ (R,Ṙ) = 0. (8.79)

It can be shown34 that for finite systems the resulting distribution is purely
canonical (without 1/Nk corrections) in the restricted sense, i.e. in the coordinate
part only.

Another form of the friction parameterζ was proposed by Berendsenet al.36

This now has the formζ = γ(1−TD/T) with constantγ , T is the actual temperature
T = ∑i mv2

i /(3kB), and TD is the desired temperature. It can be shown that
the temperature decays to the desired temperature exponentially with time at
rate given by the coefficientγ . However, this method is not time reversible;
moreover, it can be shown that the Nosé method (see below) isthe only method
with a single friction parameter which gives a full canonical distribution,37 so
Berendsen’s method cannot have this property. Berendsen’smethod can be related
to a Langevin description of thermal coupling, in the sense that the time evolution
of the temperature for a Langevin system (see Section 8.8) can be shown to be
equivalent to that of a system with a coupling viaζ as given by Berendsen.

Nosé’s method in the formulation by Hoover37 uses yet another friction
parameterζ which is now determined by a differential equation:

dζ
dt

=

(

∑
i

v2
i −3NkBTD

)

/Q (8.80)

whereQ is a parameter which has to be chosen with some care (see below).38

This way of keeping the temperature constant yields the canonical distribution for
positions and momenta, as will be shown in the next subsection.

The Nosé and the Andersen methods yield precise canonical distributions for
position and momentum coordinates . They still have important disadvantages
however. In the Andersen method, it is not always clear at which rate the velocities
are to be altered and it has been found39, 40 that the temperature sometimes levels
down at the wrong value. The Nosé-Hoover thermostat suffers from similar
problems. In this method, the coupling constantQ in Eq. (8.80) between the
heat bath and the system must be chosen – this coupling constant is the analogue
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of the velocity alteration rate in the Andersen method. It turns out38 that for a
Lennard–Jones fluid at high temperatures, the canonical distribution comes out
well, but if the temperature is lowered,26 the temperature starts oscillating with
an amplitude much larger than the standard deviation expected in the canonical
ensemble. It can also occur that such oscillations are much smaller than the
expected standard deviation, but in this case the fluctuations on top of this
oscillatory behaviour are much smaller than in the canonical ensemble. Martyna
et al.41 have devised a variant of the Nosé-Hoover thermostat whichis believed
to eliminate these problems to some extent. Although the difficulties with these
constant temperature approaches are very serious, they have received rather little
attention to date. It should be clear that it must always be checked explicitly
whether the temperature shows unusual behaviour, in particular, it should not
exhibit systematic oscillations, and the standard deviation for N particles inD
dimensions should satisfy

∆T =

√

2
ND

T (8.81)

where∆T is the width of the temperature distribution andT is the mean value.26

This equation follows directly from the Boltzmann distribution.

*8.5.1.2 Derivation of the Nosé-Hoover thermostat

In this section we shall discuss Nosé’s approach,34, 42 in which the heat bath is
explicitly introduced into the system in the form of a singledegree of freedoms.
The Hamiltonian of the total (extended) system is given as

H (P,R, ps,s) = ∑
i

p2
i

2ms2
+ 1/2 ∑

i j ,i 6= j

U(r i − r j)+
p2

s

2Q
+gkT ln(s). (8.82)

g is the number of independent momentum-degrees of freedom ofthe system (see
below), andR andP represent all the coordinatesr i andpi as usual. The physical
quantitiesR, P andt (time) are virtual variables – they are related to real variables
R′, P′ andt ′ via R′ = R, P′ = P/s andt ′ =

∫ t dτ/s. With these definitions we have
for the real variablesP′ = dQ′/dt′.
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First we derive the equations of motion in the usual way:

dr i

dt
=

∂H

∂pi
=

pi

ms2
(8.83a)

ds
dt

=
∂H

∂ ps
=

ps

Q
(8.83b)

dpi

dt
= −∂H

∂ r i
= −∇iU(R) = −∑

i< j

∇iU(r i − r j) (8.83c)

dps

dt
= −∂H

∂s
=

(

∑i p2
i

ms2
−gkBT

)

/s. (8.83d)

We have used the notation∂H /∂pi = ∇piH , etc. The partition function of
the total system (i.e. including heat bath degree of freedoms) is given by the
expression:

Z =
1
N!

∫

dps

∫

ds
∫

dP
∫

dR

δ

(

∑
i

p2
i

2ms2
+ 1/2 ∑

i j ,i 6= j

U(r i j )+
p2

s

2Q
+gkBT ln(s)−E

)

. (8.84)

Integrations
∫

dRand
∫

dPare over all position and momentum degrees of freedom.
We now rescale the momentapi:

pi

s
= p′

i, (8.85)

so that we can rewrite the partition function as

Z =
1
N!

∫

dps

∫

ds
∫

dP′
∫

dR

s3Nδ

(

∑
i

p′2i
2m

+ 1/2 ∑
i j ,i 6= j

U(r i j )+
p2

s

2Q
+gkBT ln(s)−E

)

. (8.86)

We define the HamiltonianH0 in terms ofRandP′ as

H0 = ∑
i

p′2i
2m

+ 1/2 ∑
i j ,i 6= j

U(r i j ). (8.87)

Furthermore we use the relationδ [ f (s)] = δ (s− s0)/ f ′(s) with f (s0) = 0 and set
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g = 3N+1, so that we can rewrite Eq. (8.86) as

Z =
1
N!

∫

dps

∫

ds
∫

dP′
∫

dR
s3N+1

(3N+1)kBT

δ
(

s−exp

[

−H0(P′,R)+ p2
s/2Q−E

(3N+1)kBT

])

=
1

(3N+1)kBT
1

N!

∫

dps

∫

dP′
∫

dR exp

[

−H0(P′,R)+ p2
s/2Q−E

kBT

]

.

(8.88)

The dependence onps is simply Gaussian and integrating over this coordinate we
obtain

Z =
1

3N+1

(

2πQ
kBT

)1/2

exp(E/kBT)Zc (8.89)

whereZc is the canonical partition function:

Zc =
1
N!

∫

dP′
∫

dRexp
[

−H0(P
′,R)/kBT

]

. (8.90)

It follows that the expectation value of a quantityA which depends onR andP is
given by

〈A(P/s,R)〉 =
〈

A(P′,R)
〉

c (8.91)

where〈· · ·〉c denotes an average in the canonical ensemble. The ergodic hypothesis
relates this ensemble average to a virtual-time average.

The Lagrangian equations of motion for ther i can be obtained by eliminating the
momenta from (8.83a):

d2r i

dt2
= − 1

ms2
∇iV(R)− 2

s
dr i

dt
ds
dt

. (8.92)

In this equation the ordinary force term is recognised with afactor 1/s2 in front
and with an additional friction term describing the coupling to the heat bath. The
factor 1/s2 is consistent with the relation between real and virtual time dt′ = dt/s
given above. Together with the definitionsP′ = P/sandp′s = ps/s, this leads to the
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equations of motion in real variables:

dr ′i
dt′

=
p′

i

m
(8.93a)

dp′
i

dt′
=−∇iV(R)−sp′sp

′
i/Q (8.93b)

ds
dt′

=s′2p′s/Q (8.93c)

dp′s
dt′

=

(

∑
i

p′2i /m−gkBT

)

/s−s2p′2s/Q. (8.93d)

Although these equations are equivalent to the equations for the virtual variables,
there is a slight complication in the evaluation of averages. The point is that we
have used the ergodic theorem for the canonical Hamiltonianexpressed in virtual
variables(P,R, t,s, ps) in order to relatevirtual-timeaverages to ensemble averages.
The real time steps however are not equidistant and time averaging in real time is
therefore not equivalent to averaging in virtual time. Fortunately the two can be
related. Expressing the real timet ′ as an integral over virtual timeτ according to
t ′ =

∫ t
0 dτ/swe obtain

lim
t ′→∞

1
t ′

∫ t ′

0
A(P/s,R)dτ ′ = lim

t ′→∞

t
t ′

1
t

∫ t

0
A(P/s,R)dτ/s

=

[

lim
t ′→∞

1
t

∫ t

0
A(P/s,R)dτ/s

]

/

(

lim
t ′→∞

1
t

∫ t

0
dτ/s

)

= 〈A(P/s,R)/s〉/〈1/s〉 . (8.94)

It can be verified (see problem 8.10) that the latter expression coincides with the
canonical ensemble average if we putg equal to 3N instead of 3N+1. This means
that if we carry out the simulation using Eqs. (8.93) withg= 3N, real time averages
are equivalent to canonical averages.

Hoover37 showed that by definingζ = sp′s/Q, Eqs. (8.93) can be reduced to the
simpler form

dr ′i
dt′

=
p′

i

m
;

dp′
i

dt′
= Fi −ζp′

i; (8.95)

dζ
dt′

=

(

∑i p′2i
m

−gkBT

)

/Q, (8.96)

and takinggequal to the number of degrees of freedom, i.e. 3N, he was able to show
that the distributionf (P,R,ζ ) is phase space conserving, i.e. it satisfies Liouville’s
equation.
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The disadvantage of the real time equations is that they are not Hamiltonian, in
the sense that they cannot be derived from a Hamiltonian. Although this might not
seem to be a problem, we prefer Hamiltonian equations of motion as they allow
for stable (symplectic) integration methods as discussed in Section 8.4. Winkler
et al.43 have formulated canonical equations of motion in real time but these are
subject to severe numerical problems when integrating the equations of motion for
large systems.

8.5.2 Keeping the pressure constant

In experimental situations not only the temperature is keptunder control but also
the pressure. The partition function for the(N pT)-ensemble is given as

Q(N, p,T) =
∫

dV e−β pV 1
N!

∫

dR dP e−βH (R,P) =
∫

dV e−β pVZc(N,V,T)

(8.97)
(see Chapter 7). We use a lower-casep for the pressure in order to avoid confusion
with the total momentum coordinateP. We now describe the scheme which is
commonly adopted for keeping the pressure constant but do not go into too much
detail as the analysis follows the same lines as the Nosé-Hoover thermostat, and
refer to the literature for details.32, 34, 37

Andersen first presented this scheme. He proposed incorporating the volume into
the equations of motion as a dynamical variable and scaled the spatial coordinates
back to a unit volume:

r ′i = r iV
1/3, (8.98)

where again the prime denotes the real coordinate – unprimedcoordinates are those
of the virtual system. Moreover

p′
i = pi/

(

sV1/3
)

. (8.99)

The canonical Hamiltonian is extended bytwo variables, the volumeV and the
canonical momentumpV which can be thought of as the momentum of a piston
closing the system.† The Hamiltonian has an extra ‘potential energy’ termpV and
a ‘kinetic’ term p2

V/2W (W is the ‘mass’ of the piston, andpV its momentum):

H (P,R, ps,s, pV ,V) = ∑
i

p2
i

2mV2/3s2
+ 1/2 ∑

i j ,i 6= j

U [V1/3R]+

p2
s

2Q
+gkT ln(s)+ pV + p2

V/2W. (8.100)

†Note that the system expands and contracts isotropically, so instead of a piston, the whole system
boundary moves.
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The equations of motion now read:

dr
dt

=
∂H

∂pi
=

pi

mV2/3s2
(8.101a)

ds
dt

=
∂H

∂ ps
=

ps

Q
(8.101b)

dpi

dt
= −∂H

∂ r i
= −∇iU(V1/3R) (8.101c)

dps

dt
= −∂H

∂s
=

(

∑i p2
i

mV2/3s2
−gkBT

)

/s (8.101d)

dV
dt

=
∂H

∂ pV
=

pV

W
(8.101e)

dpV

dt
= −∂H

∂V
=

(

∑i p2
i

mV2/3s2
−∑

i

∇iU(V1/3R) · r i

)

/(3V)− p. (8.101f)

It can be shown in the same way as in the thermostat case that the distribution of
configurations corresponds to that of the (NpT) ensemble:

ρ(P′,R′,V) = VN exp
{

−
[

H0(P
′,R′)+ pV

]

/kBT
}

. (8.102)

Hoover37 proposed similar equations of motion which conserve phase space, but
they differ from this distribution by an extra factorV in front of the exponent.44

The method described is restricted to isotropic volume changes and can therefore
not be used for studying structural phase transitions in solids. A method which
allows for anisotropic volume changes while keeping the pressure constant was
developed by Parrinello and Rahman.45

8.6 Molecular systems

8.6.1 Molecular degrees of freedom

Interactions in molecular systems can be divided into intra-molecular and inter-
molecular ones. The latter are often taken to be atom-pair interactions similar to
those considered in the previous sections. The intra-molecular interactions (i.e. the
interactions between the atoms of one molecule) are determined by chemical bonds
and are therefore not only strong compared with the inter-molecular interactions
(between atoms of different molecules) but include also orientational dependencies.
We now briefly describe the intra-molecular degrees of freedom and interactions –
see also Figure 8.4.
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stretch

torsion

bend

Figure 8.4: Different types of motion of atoms within a molecule.

First of all, the chemical bonds can stretch. The interaction associated with this
degree of freedom is usually described in the form of a harmonic potential for the
bond lengthl :

Vstretch(l) =
1
2

αS(l − l0)
2 (8.103)

wherel0 is the equilibrium bond length.
Now consider three atoms bonded in a chain-like configuration A–B–C. This

chain is characterised by a bending, orvalence angleϕ which varies around an
equilibrium valueϕ0 and the potential is described in terms of a cosine:

Vvalence(ϕ) = −αB [cos(ϕ −ϕ0)+cos(ϕ + ϕ0)] (8.104)

where the equivalence of the anglesϕ0 and−ϕ0 is taken into account. Often, a
harmonic approximation cos(ϕ) ≈ 1−ϕ2/2, valid for small angles, is used.

Finally there is an interaction associated with chain configurations of four atoms
A–B–C–D. The plane through the first three atoms, A, B, C does not coincide in
general with that through B, C and D. Thetorsion interaction is similar to the bend
interaction, but the angle (calleddihedralangle), denoted byϑ , is now that between
these two planes:

Vtorsion(ϑ) = −αT [cos(ϑ −ϑ0)+cos(ϑ + ϑ0)] . (8.105)
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This interaction is also often replaced by its harmonic approximation. Other
interactions and more complicated forms of these potentials can be used – we have
only listed the simplest ones.

Characteristic vibrations associated with the different degrees of freedom
distinguished here can be derived from the harmonic interactions – the frequencies
vary as the square root of theα-coefficients. In general, the bond length vibrations
are the most rapid, followed by the bending vibrations. In order for an MD
integration to be accurate, the time step should be chosen smaller than the fastest
degree of freedom. But as this degree of freedom will vibratewith a small
amplitude, because of the strong potential, we are using most of the computer time
for those parts of the motion which are not expected to contribute strongly to the
physical properties of the system. Moreover, if there is a clear separation between
the time scales of the various degrees of freedom of the system, energy transfer
between the fast and slow modes is extremely slow, so that it is difficult, if not
impossible, to reach equilibrium within a reasonable amount of time. In such a
case it is therefore advisable to ‘freeze’ the fast ones by keeping them rigorously
fixed in time. In practice this means that lengths of chemicalbonds can safely be
kept fixed, and perhaps some bending angles. In a more approximate description it
is also possible to consider entire molecules as being rigid. In the next subsections
we shall describe how to deal with rigid and partly rigid molecules.

8.6.2 Rigid molecules

We consider molecules which can be treated as rigid bodies whose motion consists
of translations of the centre of mass and rotations around this point. The
forces acting between two rigid molecules are usually composed of atomic pair
interactions between atoms belonging to the two different molecules.† The total
force acting on a molecule determines the translational motion and the torque
determines the rotational motion. In the next subsection, we shall describe a direct
formulation of the equations of motion of a simple rigid molecule – the nitrogen
molecule. In the following subsection we shall then describe a different approach
in which rigidity is enforced through constraints added to the Lagrangian.

8.6.2.1 Direct approach for the rigid nitrogen molecule

As a simple example consider the nitrogen molecule, N2. This consists of two
nitrogen atoms, each of massm≈ 14 atomic mass units (amu) and whose separation
d is kept fixed in the rigid approximation. The coordinates of the molecule are

†Sometimes, off-centre interactions (i.e. not centred on the atomic positions) are taken into
account too but we shall not consider these.
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Figure 8.5: The nitrogen molecule.n̂ is a unit vector,ωωω is the rotation vector.

the three coordinates of the centre of mass and the two coordinates defining its
orientation. The latter can be polar angles but here we shallcharacterise the
orientation of the molecule by a unit direction vectorn̂, pointing from atom 1 to
atom 2 (see Figure 8.5).

The motion of the centre of mass of the molecule is determinedby the total
force Ftot acting on a particular molecule. This force is the sum of all the forces
between each of the two atoms in the molecule and the atoms of the remaining
molecules. The atomic forces can be modelled by a Lennard–Jones interaction
with the appropriate atomic nitrogen parametersσ = 3.31 Å, ε/kB = 37.3 K and
d = 0.3296σ .46 The equation of motion for the centre of massRCM is then

R̈CM = Ftot, (8.106)

which can be solved in exactly the same way as in an ordinary MDsimulation.
The motion of the orientation vector̂n is determined by the torqueNNN with

respect to the centre of the molecule, which is given in termsof the forcesF(1)

andF(2) acting on atoms 1 and 2 respectively:

NNN = (d/2)n̂× (F(1)−F(2)). (8.107)

The torque changes the angular momentumL of the molecule. This is equal to
Iωωω , whereI is the moment of inertiamd2/2 andωωω is the angular frequency vector
whose norm is the angular frequency and whose direction is the axis around which
the rotation takes place (see Figure 8.5). Note thatNNN is not necessarily parallel to
ωωω . The equation of motion for the angular momentum isL̇ = NNN or

Iω̇ωω = NNN . (8.108)
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The angular frequencyωωω is in turn related to the time derivative of the direction
vectorn̂:

˙̂n = ωωω × n̂. (8.109)

Combining Eqs. (8.108) and (8.109) leads to

¨̂n = ωωω × (ωωω × n̂)+NNN × n̂/I = −ω2n̂+NNN × n̂/I . (8.110)

This equation of motion leaves the norm of the direction vector n̂ invariant, as
it should – this follows directly from (8.109). In a numerical integration of the
equations of motion the norm ofn̂ is not rigorously conserved – it can suffer from
numerical errors which may growing steadily with time. We shall now see how this
can be avoided.

Let us write down the leap-frog algorithm for the equation ofmotion (8.110) for
n̂:

p(t +h/2) = p(t −h/2)+h
[

−ω2n̂(t)+NNN (t)× n̂(t)/I
]

(8.111a)

n̂(t +h) = n̂(t)+hp(t +h/2). (8.111b)

Herep represents the time-derivative ofn̂ at timest = (n+ 1/2)h. The problem
with this algorithm is that it depends onω2 and this depends in turn on the time
derivative ˙̂n. A convenient way of findingω2 is to use

p(t −h/2) = p(t)− h
2
(−ω2n̂+NNN × n̂/I)+O(h2), (8.112)

so that, usinĝn(t) ·p(t) = 0, we obtain

2p(t −h/2) · n̂(t) = hω2 +O(h2). (8.113)

Calling the left hand side of this equationλ , we have2, 47

λ = 2p(t −h/2) · n̂ (8.114a)

p(t +h/2) = p(t −h/2)+h[n̂(t)×NNN (t)/I −λ n̂(t)] (8.114b)

n̂(t +h) = n̂(t)+hp(t +h/2). (8.114c)

The continuum equations of motion guaranteed conservationof the norm of the unit
vectorn̂. The leap-frog algorithm will enforce this normalisation only up to an error
of h3. It is therefore sensible to normalisen̂ after every time step – the parameterλ
can then be viewed as Lagrange multiplier associated with the constraint|n̂|2 = 1.
In the next section we shall discuss a simpler method for simulating liquid nitrogen,
using constraints in a different way.
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For general molecules, we have an extra degree of freedom: the angle of rotation
around a molecular axis – this is the third Euler angle, whichis usually denoted
as γ . The straightforward procedure for solving the equations of motion is to
calculate the principal angular velocityωωω in terms of the time derivatives of the
Euler angles. The Euler equation of motion gives the rate of change inωωω in terms
of the torque. The time derivatives of the Euler angles can than be found again
from ωωω, and these can be used to calculate the new atomic positions.There is
however a problem when the Euler angleθ = 0, as in that case the transformation
from ωωω to the time derivatives of the Euler angles becomes singular. Evans48 has
discussed this problem and has presented methods to avoid the instability resulting
from this singularity. The most efficient one is to use the quaternion representation,
in which the orientation of the molecule is defined in terms ofa four-dimensional
unit vector rather than three Euler angles. This method was implemented by Evans
and Murad – see Ref. 49.

8.6.2.2 Enforcing rigidity via constraints

Another method for treating rigid molecules is by imposing holonomic constraints,
i.e. constraints which depend only on positions and not on the velocities, through
an extension of the Lagrangian. The Lagrangian of the systemwithout constraints
reads

L0(R,Ṙ) =
∫ t1

t0
dt

[

∑
i

mi

2
ṙ2

i −
1
2 ∑

i 6= j

U(r i − r j)

]

. (8.115)

A constraint is introduced as usual through a Lagrange multiplier λ .50 As the
constraint under consideration should hold for all times,λ is a function oft. A
simple example of a constraint is the following: particles 1and 2 have a fixed
separationd for all times (this could be the separation of the two atoms ina nitrogen
molecule). Such a constraint on the separation is calledbond constraint– it can
formally be written as

σ [R(t)] = [r1(t)− r2(t)]
2−d2 = 0. (8.116)

The Lagrangian for the system with this constraint reads

L(R,Ṙ) = L0(R,Ṙ)−
∫ t1

t0
dt λ (t)

{

[r1(t)− r2(t)]
2−d2

}

. (8.117)

The integral over time is needed because the constraint holds for all times
betweent0 and t1. The equations of motion are the Euler-Lagrange equations
for this Lagrangian. These equations will depend on the Lagrange parameters,
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λ , whose values are determined by the requirement that the solution must satisfy
the constraint.

A slightly more complicated example is the trimer molecule CS2.51 The linear
geometry of this molecule is in principle imposed automatically by the correct bond
constraints between the three pairs of atoms. However, the motion of this molecule
is described by five positional degrees of freedom: two to define the orientation of
the molecule and three for the centre of mass position. The three atoms without
constraints have nine degrees of freedom and if three of these are eliminated using
the bond constraints, we are left with six degrees of freedominstead of the five
required. Therefore one redundant degree of freedom is included in this procedure,
which is obviously inefficient. A better procedure is therefore to fix only the
distance between the two sulphur atoms:

|rS(1) − rS(2) |2 = d2 (8.118)

and to fix the position of the C-atom by a linear vector constraint:

(rS(1) + rS(2))/2− rC = 0, (8.119)

adding up to the four constraints required.
For a molecule, in general a number of atoms forming a ‘backbone’ set is

identified and these are fixed by bond constraints (the two sulphur atoms in our
example) and the remaining ones are fixed by linear constraints of the form (8.119).
In the case of a planar structure we take three noncolinear atoms as a backbone.
These atoms satisfy three bond constraints and the remaining atoms are constrained
linearly. In a three-dimensional molecular structure, four backbone atoms are
subject to six bond constraints and the remaining ones to a linear vector constraint
each. In the constraint procedure, the degrees of freedom ofthe nonbackbone atoms
are eliminated so that the forces they feel are transferred to the backbone. This
elimination is always possible for linear constraints suchas those obeyed by the
nonbackbone atoms.

Let us now return to our CS2 example. First we write down the equations of
motion for all three atoms, following from the extended Lagrangian (the Lagrange
parameter for the bond constraint is calledλ , that of the linear vector constraintµµµ):

mSr̈S(1) = F1−2λ (rS(1) − rS(2))−µµµ/2 (8.120a)

mSr̈S(2) = F2+2λ (rS(1) − rS(2))−µµµ/2 (8.120b)

mCr̈C = FC+µµµ . (8.120c)

The linear constraint (8.119) is now differentiated twice with respect to time, and
using the equations of motion we obtain

FC +µµµ =
mC

2mS
(F1+F2−µµµ). (8.121)
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We can thus eliminateµµµ in the equations of motion for the S-atoms and obtain,
with M = 2mS+mC:

mSr̈S(1) =
(

1− mC

2M

)

F1−
mC

2M
F2 +

mS

M
FC−2λ (rS(1) − rS(2)); (8.122a)

mSr̈S(2) =
(

1− mC

2M

)

F2−
mC

2M
F1 +

mS

M
FC+2λ (rS(1) − rS(2)). (8.122b)

These equations define the algorithm for the positions of theS-atoms, and the
position of the C-atom is fixed at any time by the linear constraint.

Note that we still have an unknown parameterλ present in the resulting
equations: this parameter is fixed by demanding that the bondconstraint must hold
for rS(1) andrS(2) at all times (note that we have not yet used this constraint).It is
not easy to eliminateλ from the equations of motion as we have done withµµµ , as
the bond length constraint is quadratic. Instead, we solve for λ at each time step
using the constraint equation. We outline this procedure for our example. Suppose
we have the positionsrS(1) andrS(2) at timest andt −h and that for both these time
instances the bond constraint is satisfied. According to theequations of motion
(8.122) in the Verlet scheme, predictions for the positionsat t +h are given by

rS(1)(t +h) = 2rS(1)(t)− rS(1)(t −h)+h2
(

1− mC

M

)

F1(t)−

h2 mC

M
F2 +h2mS

M
FC(t)−2h2λ (t)[rS(1)(t)− rS(2)(t)]; (8.123a)

rS(2)(t +h) = 2rS(2)(t)− rS(2)(t −h)+h2
(

1− mC

M

)

F2(t)−

h2 mC

M
F1 +h2mS

M
FC(t)+2h2λ (t)[rS(1)(t)− rS(2)(t)]. (8.123b)

The predictions for the positions att + h are linear functions ofλ and if we
substitute them into the bond constraint (8.118), we obtaina quadratic equation for
λ which can be solved trivially – of the two solutions, we keep the smallest value
of λ . This means that the bond constraint is now satisfied to computer precision
for all times. It should be noted that the value ofλ in this procedure will deviate
slightly from its value in the exact solution of the continuum case, but the deviation
remains within the overall orderh4 error of the integration scheme.52

We have given the CS2 example here because it illustrates the general procedure
involving linear constraints which are all eliminated fromthe equations of motion,
thereby reducing the degrees of freedom to those of the backbone atoms (the two
sulphur atoms in our example). These are confined by quadratic bond constraints.
The Lagrange multipliers associated with the latter are kept in the problem and
fixed by the bond constraints themselves. After solving for the backbone, the linear
constraints fix the positions of the remaining atoms uniquely.
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The nitrogen molecule which was discussed in the previous subsection using a
direct approach can be treated with the method of constraints. It is a simple problem
because there are no linear constraints which have to be usedto remove redundant
degrees of freedom from the equations of motion, and we are left with the following
equations:

m1r̈1 = F1 + λ (r1− r2) (8.124a)

m2r̈2 = F2−λ (r1− r2). (8.124b)

The Verlet equations lead again to linear predictions forr1 andr2 at the next time
step and substituting these into the bond constraint leads to a quadratic equation
which fixes the Lagrange multiplierλ . For an implementation, see problem 8.7.

8.6.3 General procedure – partial constraints

In the previous section we have considered systems consisting of completely rigid
molecules. Now we discuss partially rigid molecules, consisting of rigid fragments
which can move with respect to each other. The motion of two fragments attached
by chemical bonds can be described in terms of stretching, bending and torsion,
as described in Section 8.6.2. In general, partial constraints cannot be treated
using the methods given previously. Trying to use the constraints to reduce the
equations to a smaller set and formulating equations for therigid fragments in
terms of quaternions is quite complicated. Ryckaertet al.51–54 devised a simple
and efficient iterative method for treating arbitrary constraints which is now still
the most important method for MD with polyatomic molecules.Analogous to
the method of constraints for rigid molecules, the rigidityof the fragments can
be imposed by constraints, which are all expressed in Cartesian coordinates for
simplicity. The Lagrange multipliers are determined aftereach integration step by
substituting the new positions into the constraint equations.

The algorithm, called SHAKE, is formulated within the framework of the Verlet
algorithm. The forces experienced by the particles consistof physical and of
constraint forces. The constraints are given byσk(R) = 0, wherek = 1, . . . ,M;
M is the number of constraints. We denote the physical force onparticlei by Fi and
the constraint force is∑M

k=1 λk∇iσk(R), whereλk is the Lagrange multiplier which
is to be determined. At time stept = nh we have at our disposal the positions at
times t and t − h. These positions satisfy the constraint equationsσk(R) = 0 to
numerical precision. The aim is to find the positions at timet + h, satisfying the
constraint equation. First we calculate the new positionsr̃ i(t + h) without taking
the constraints into account:

r̃ i(t +h) = 2r i(t)− r i(t −h)+h2Fi [r i(t)]. (8.125)
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The final positionsr i(t +h) can be written as

r i(t +h) = r̃ i(t +h)−
M

∑
k=1

λk∇iσk[R(t)]. (8.126)

Theλk are found in an iterative procedure. We number the iterations by an index
l . In each iteration, a loop over the constraintsk is carried out, and in each step of
this loop, the Lagrange parameterλk and all the particle positions are updated. The
positions are updated according to

rnew
i = rold

i −h2λ (l)
k ∇iσk[R(t)]. (8.127)

The parameterλ (l)
k is found from a first order expansion ofσk(R), requiring that

this vanishes:

σk[R
new] ≈ σk[R

old]−h2λ (l)
k ∑

i

∇iσk[R
old]∇iσk[R(t)] = 0, (8.128)

leading to

λ (l)
k =

σk[Rold]

h2{∑i ∇iσk[Rold]∇iσk[R(t)]} . (8.129)

Each step will therefore shift the positions more closely tothe point where they all
satisfy the constraint – the iterative process is stopped when all the constraints are
smaller (in absolute value) than some small positive number.

The algorithm can be summarised as follows:

CalculateR̃(t +h) using (8.125);
SetRold equal toR̃(t +h);
REPEAT

Calculateλ (l)
k from (8.129);

FORk = 1 TOM DO
SetRold equal toRnew

UpdateRold to Rnew using (8.127);
END FOR

UNTIL Constraints are satisfied.

The SHAKE algorithm turns out to be quite efficient: for a system of 48 atoms
with 112 constraints, typically 25 iterations are necessary in order to achieve
convergence of the constraints within a relative accuracy of 5 ·10−7.52
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8.7 Long range interactions

Coulombic and gravitational many-particle systems are of great interest because
they describe plasmas, electrolytic solutions, and celestial mechanical systems.
The interaction is described by a pair-potential which in three dimensions is
proportional to 1/r – in two dimensions it is lnr. The long range character of
this potential poses problems. First of all, it is not clear whether the potential can
be cut off beyond some finite range. One might hope that for a charge-neutral
Coulomb system screening effects could justify this procedure. Unfortunately,
for most systems of interest, the screening length exceeds half the linear system
size which can be achieved in practice, so we cannot rely on this screening effect
to justify cutting off the potential, as this would essentially alter the form of the
screening charge cloud. Also, when using the minimum image convention with
periodic boundary conditions, equally charged particles tend to occupy opposite
ends of a half diagonal of the system unit cell in order to minimise their interaction
energy, thus introducing unphysical anisotropies. Therefore, we cannot cut off the
potential and all pairs of interacting particles must be taken into account when
calculating the forces.

Connected with this is an essential difference in the treatment of periodic or
nonperiodic system cells. In the latter case, we simply use the 1/r potential
(or lnr in two dimensions), but in the periodic case we must face the problem
that in general the sum over the image charges in the periodicreplicas does not
converge. This can be remedied by subtracting an offset fromthe potential – note
that adding or subtracting a constant to the potential does not alter the forces and
hence the dynamics of the system – leading to the following expression for the total
configurational energy for a collection of particles with charge (or mass)qi located
atqi , i = 1, . . . ,N:

U = ∑
R

∑
i< j

qiq j

|r i − r j +R| −∑
i< j

qiq j∑′
R

1
R

. (8.130)

Here ∑i< j denotes a sum overi and j running from 1 toN with the restriction
i < j; furthermore,∑R denotes a sum over the locationsR of the system replicas,
the prime with the second sum denoting exclusion ofR = 000. From now on we
shall restrict ourselves to charge-neutral systems with∑i qi = 0, for which the
second term in (8.130) vanishes. The system then has a dipolemoment and the
leading term in computing the total energy in PBC is the result of the dipole–dipole
interactions between the replicas. Evaluating the sum overthe replicas is a difficult
problem, even for charge-neutral systems and it will be addressed in the next
subsection. In Section 8.7.2 we shall then see how the forcescan be evaluated
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more efficiently than in the conventional MD approach where we must sum over
all pairs.

8.7.1 The periodic Coulomb interaction

The total configurational energy of the charge-neutral system is given by

U = ∑
R

∑
i< j

qiq j

|r i − r j +R| ; ∑
i

qi = 0. (8.131)

It is assumed here that the particles are point particles, that is, their charge
distribution is given by a delta-functionρi(r) = qiδ (r − r i). In most realistic
cases there will be additional short range interactions preventing the particles from
approaching each other too closely. We now apply a Fourier transform as defined
in Eqs. (4.104–4.105) to (8.131). We have

1
r

=

∫

d3k
(2π)3

4π
k2 eik·r . (8.132)

Substituting this into (8.131) and using

∑
R

eik·R =
(2π)3

V ∑
K

δ 3(k −K) (8.133)

whereV is the volume of the system andK are reciprocal lattice vectors, we obtain

U =
1
V ∑

K 6=000
∑
i< j

eiK ·r i j

K2 qiq j . (8.134)

We have not yet made any progress as we have only replaced the infinite sum over
R by another infinite sum overK . It might seem that this sum diverges for smallK ,
but this is not the case for charge-neutral systems: this neutrality is responsible for
the exclusion of theK = 000 term, and it ensures convergence of the small-K terms.
Surprisingly, the divergences in the original real-space sum (8.131) were associated
with the long range character of the force whereas the divergence in (8.134) is due
to the short range (largeK ) part. In reality, the ions have a finite size, which means
that they will repel each other at short distances and this implies that the Coulomb
interaction has to be taken into account for ranges beyond some small cut-offrcore

only, and we can neglect theK-values forK > 2π/rcore. Of course, this does not
yield an exactly spherical cut-off as the reciprocal lattice is cubic, but if the cut-off
radius is sufficiently small this will cause no significant errors. Moreover, the core
radius can be chosen much smaller than the range of repulsiveinteraction (which
is always present in realistic models) so that this error canbe reduced arbitrarily.
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In case one insists on having delta-function distributions, or if the cut-off radius
is so small that calculating the Fourier sum is still inconveniently demanding, it is
possible first to replace the delta-charges by artificial, extended charge distributions
with some finite radius and then correcting for this replacement. This is done in
the so-called Ewald summation technique. We shall not give afull derivation of the
Ewald summation method since it is quite lengthy – it is described elsewhere55, 56–
but sketch briefly the idea behind this technique. In the Ewald method, the extended
charge distribution is taken to be a Gaussian:

ρi(r) = qi

(α
π

)3/2
exp
(

−α |r − r i|2
)

(8.135)

where the normalisation factor is for the three-dimensional case. This charge
distribution results in a convergingK-sum, and this extension is corrected for
by adding the potential resulting from the difference between the point-charge
and Gaussian distribution. Since this difference is neutral, it generates a rapidly
decaying potential, which can then be treated by the minimumimage convention.
The total interaction potential for chargesqi located atr i is then given as

UPBC =
2π
V ∑

K 6=000

∣

∣

∣

∣

∣

∑
i

qie
iK ·r i

∣

∣

∣

∣

∣

2
e−K2/(4α)

K2 + ∑
i< j

qiq j
erfc(

√
αr i j )

r i j
−
(α

π

)1/2 N

∑
i=1

q2
i

(8.136)
where the function erfc is the complementary error functiondefined in (4.116):
erfc = 1− erf. The first term of the Ewald sum converges rapidly due to the
exp[−K2/(4α)] term resulting from the Gaussian charge distribution. The second
term in the sum is short-ranged, so it can be treated in a minimum image
convention. The forces can be found by differentiation. TheEwald sum can also
be generalised for dipolar interactions (Ewald-Kornfeld method).

In a careful treatment of the Ewald technique, the sum is carried out formally by
taking a large volume of some particular shape (e.g. a sphere) containing the system
replicas and then this shape is increased. The reason for this is that the sum over
the interactions is conditionally convergent, i.e. it depends on the order in which the
various contributions are taken into account. This is explained by the fact that the
system replicas all have a dipole moment and will hence buildup a surface charge
at the boundary of the huge volume. The most natural boundarycondition (the
one which is arrived at in more pedestrian derivations) is consistent with the sphere
being embedded in a perfectly conducting medium. For the sphere embedded in a
dielectric, a correction must be included.56 It is important to be aware of this when
calculating (say) dielectric properties of a charged system.
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8.7.2 Efficient evaluation of forces and potentials

As a result of the long range of the forces, all interacting pairs must be taken
into account in the calculation of forces or potentials. Thestraightforward
implementation, considered in the previous sections of this chapter, also called
theparticle-particle method(PP) because all pairs are considered explicitly, would
requireO(N2) steps, but it turns out possible to reduce this to a more favourable
scaling. We shall briefly sketch two other methods, and then consider a third one,
the tree methodin greater detail.

In theparticle-mesh(PM) method, a (usually cubic) grid in space is defined. A
mass (or charge) distributionρ is then defined by assigning part of each particle’s
mass (or charge) to its four neighbouring grid points according to some suitable
scheme. The potential can then be found by solving Poisson’sequation on the grid

∇2
DU(r) = −4πρ(r) (8.137)

where∇2
D is the finite-difference version of the Laplace operator. Using fast Fourier

transforms (see Section A.9), this calculation can be carried out in a number of
steps proportional toM logM whereM is the number of grid points. Knowing
the potential, the force at any position can be found by taking the finite difference
gradient of the potential, after a suitable correction for the self-energy resulting
from the inclusion of the interaction of a particle with itself in this procedure.
This method obviously becomes less accurate for pairs of particles with a small
separation, as in that case the Coulomb/gravitation potential is not sufficiently
smooth to be represented accurately on the grid. Therefore it is sensible to treat
particles within some small range (for example a range comparable to the grid
constant) by the PP method. This can be done by splitting the force into a smooth
long range (LR) and a short range (SR) part:

F = FLR +FSR, (8.138)

such that the short range force vanishes beyond some small range, and the long
range force can be calculated accurately on the grid. The splitting can be obtained
by considering the long range force as resulting from a particle whose charge
(or mass) is distributed over some finite range (homogeneoussphere, Gaussian
distribution, . . . ). The short range force is then the potential resulting from the
difference between the point charge and the finite-width distribution (cf. the Ewald
method). The long range interactions are treated as in the PMmethod, and the
short range ones can be dealt with using the PP scheme. The resulting method is
called theparticle-particle/particle-mesh(PPPM) or P3M method. For a detailed
description of the PM and PPPM methods, see Ref. 19.
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...........

Figure 8.6: Hierarchical subdivision of the full simulation space (a square) into children,
grandchildren etc.

We now describe thetree-code algorithm in some detail.57–60 The
amount of computer time involved in the evaluation of the forces in this method
is reduced toO(N lnN) steps. We describe the Barnes-Hut57 version in the
formulation by Van Dommelen and Rundensteiner61, 62 and restrict ourselves
to two-dimensional gravitational (or Coulomb) systems, with an interaction lnr
between two particles of unit mass (or charge) and separation r. The idea of the
method is that the force which a mass experiences from a distant cluster of particles
can be calculated from a multipole expansion of the cluster.The convergence of
the multipole expansion depends on the ratio of the distancefrom the cluster and
its linear size.

The total system volume is hierarchically divided up into blocks. We start with
a square shape (level 0) which in a first step is divided into four squares of half the
linear size (level 1), and at the next step each of these squares is divided up into
four smaller ones etc. We speak of parents and children of squares in this hierarchy
– see Figure 8.6. Now consider some squareSat leveln. It is not justified to apply
the multipole expansion to nearest neighbour squares as particles in neighbouring
squares might be very close so that the multipole expansion would require far too
many terms. These squares will be dealt with at a higher level, so we apply this
approximation in each step to at least next nearest squares and skip squares which
lie in regions which have been treated at previous levels. Therefore, the squares
with which the particles inS will interact at the present level are those (1) which
are not nearest neighbours ofSand (2) whose parent was a nearest neighbour of the
parent ofS. These squares form theinteraction listof S. Figure 8.7 shows which
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Figure 8.7: Interaction list of a squareS at leveln. The squares at leveln are separated
by thin lines, their parents (at leveln− 1) by heavy lines. For the square labeled by S,
the squares in the interaction list of a square are denoted byI. The nearest neighbours are
labeled by N.

squares are in the interaction list ofS. It will be clear that all the interactions will
be taken into account when proceeding in this way.

More specifically, at leveln we carry out two steps.

1. We calculate the multipole moments of each square of the present level.

2. For each particle, we calculate the interactions with theinteraction list of the
square to which it belongs using the multipole expansion forthe particles in the
cells.

This process is carried through overnmax = (log2 N)/2 steps so that forN being an
integer power of 4, the squares at the lowest level contain onaverage one particle.
Empty squares are ‘pruned’ from the tree, that is, they are not divided up any more.

Let us now calculate the number of steps needed in this procedure. We assume
that we carry out the multipole expansion up to orderM. This number is
independent of the number of particlesN. At level n, the first step, in which the
multipole moments are calculated, requiresN×M steps. The second step requires
N×M ×K steps, whereK is the average size of the interaction list, which is at
most 27.K andM are fixed numbers, there areO(lnN) levels, so the total number
of steps scales asO(N lnN).

For two dimensions, the multipole moment expansion is very simple if the space
is viewed as a complex plane with particles at positionsz= x+ iy. The potential
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is then given as the real part of ln(z) and this can easily be expanded in a Taylor
expansion around the centre of the cell. For a cluster centred at the origin and
consisting of particles of chargeqi at positionszi , the potential at the pointz is
given by

U(z) =
Nc

∑
i=1

qi ln(z−zi) = a0 lnz−
M

∑
k=1

ak

zk +O

(

R
z

)M+1

(8.139)

whereR is the linear size of the cluster containingNc particles and the moment
expansion coefficientsak are given by

a0 = ∑
i

qi and ak =
Nc

∑
i=1

qizk
i

k
,k≥ 1. (8.140)

For the field, written as a complex numberE at the pointzwe have

E(z) =
M

∑
k=0

ak

zk+1 +O(R/z)M+1. (8.141)

From Figure 8.7 it can be seen that a worst case estimate forR/z is 2/3. In practice,
fewer than 20 multipole coefficients are necessary to obtainmachine accuracy (32
bits).

In fact, it turns out possible to reduce the amount of work needed for the force
evaluation toO(N). The resulting method is called the fast multipole method
(FMM) – see refs. 62 and 63.

8.8 Langevin dynamics simulation

Most realistic physical systems are tractable only in amodel, in which the
interesting features of the system are highlighted and in which the less relevant
parts are either eliminated or treated in an approximate way. In this spirit we have
for example eliminated molecular degrees of freedom in Section 8.6 by considering
(parts of) molecules to be rigid. Another example of this approach is the Langevin
dynamics technique, the subject of the present section. Consider a solution
containing polymers or ions which are much heavier than the solvent molecules.
As the kinetic energy is on average divided equally over the degrees of freedom,
the ions or polymers will move much more slowly than the solvent molecules.
Moreover, because of their large mass, they will change their momenta only after
many collisions with the solvent molecules and the picture which emerges is that of
the heavy particles forming a system with a much longer time scale than the solvent
molecules. This difference in time scale can be employed to eliminate the details of
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the degrees of freedom of the solvent particles and represent their effect by forces
that can be treated in a simple way. This process can be carried out analytically
through a projection procedure (see chapter 9 of Ref. 11 and references therein) but
here we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles without taking into account
their degrees of freedom explicitly? When a heavy particle is moving through
the solvent, it will encounter more solvent particles in thefront than in the back.
Therefore, the collisions with the solvent particles willon averagehave the effect
of a friction force proportional and opposite to the velocity of the heavy particle.
This suggests the following equation of motion for the heavyparticle:

m
dv
dt

(t) = −γv(t)+F(t) (8.142)

whereγ is the friction coefficient andF the external or systematic force, due to
the other heavy particles, walls, gravitation, etc. It has been noted in Section 7.2.1
that the motion of fluid particles exhibits strong time correlations and therefore the
effects of their collisions should show time correlation effects. Time correlations
affect the form of the friction term which, in Eq. (8.142), has been taken dependent
on theinstantaneousvelocity but which in a more careful treatment should include
contributions from the velocity at previous times through amemory kernel:

m
dv
dt

(t) = −
∫ t

−∞
dt′ γ(t − t ′)v(t ′)+F(t). (8.143)

In order to avoid complications we shall proceed with the simpler form (8.142). In
the following we shall restrict ourselves to a particle in one dimension; the analysis
for more particles in two or three dimensions is similar.

Equation (8.142) has the unrealistic effect that if the external forces are absent,
the heavy particle comes to rest, whereas in reality it executes a Brownian motion.
To make the model more realistic we must include the rapid variations in the force
due to the frequent collisions with solvent particles on topof the coarse-grained
friction force. We then arrive at the following equation:

m
dv

dt
(t) = −γv(t)+F(t)+R(t) (8.144)

whereR(t) is a ‘random force’. Again, the time correlations present inthe fluid
should show up in this force, but they are neglected once moreand the force is
subject to the following conditions.

• As the average effect of the collisions is already absorbed in the friction, the
expectation value of the random force should vanish:

〈R(t)〉 = 0. (8.145)
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• The values ofR are taken to be uncorrelated:

〈R(t)R(t + τ)〉 = 0 for τ > 0. (8.146)

• The values ofR are distributed according to a Gaussian:

P[R(t)] = (2π
〈

R2〉)−1/2exp(−R2/2
〈

R2〉). (8.147)

All these assumptions can be summarised in the following prescription for the
probability for a set of random forces to occur betweent0 andt1:

P[Ri(t)]t0<t<t1 ∼ exp

(

− 1
2q

∫ t1

t0
dt R2

i (t)

)

(8.148)

with q a constant to be determined.
Below we consider the numerical integration of the equations of motion for the

heavy particles, and in that case it is convenient to assume that the random force is
constant over each time step: at stepn, the value of the random force isRn. For this
case, the correlation function for theRn reads

〈RnRm〉 =

∫

dRndRn+1 . . .dRm exp
(

− 1
2q ∑m

l=nR2
l ∆t
)

RnRm

∫

dRndRn+1 . . .dRm exp
(

− 1
2q ∑m

l=n R2
l ∆t
) (8.149)

which yields the value 0 forn 6= m, in accordance with the previous assumptions.
Forn = mwe find the valueq/∆t, so we arrive at

〈RnRm〉 =
q
∆t

δnm. (8.150)

For the continuum case∆t → 0 (8.150) converges to theδ -distribution function

〈R(t)R(t + τ)〉= qδ (τ). (8.151)

We now return to the continuum form of the Langevin equation (8.144). This can
be solved analytically and the result is

v(t) = v(0)exp(−γt/m)+
1
m

∫ t

0
exp[−(t − τ)γ/m]R(τ)dτ . (8.152)

Because the expectation value ofR vanishes we obtain

〈v(t)〉 = v(0)exp(−γt/m) (8.153)
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which is to be expected for a particle subject to a friction force proportional and
opposite to the velocity.

The expectation value ofv2 is determined in a similar way. Using (8.151) and
(8.144) we find

〈

[v(t)]2
〉

= v2
0 exp(−2γt/m)+

q
2γm

(1−e−2γt/m), (8.154)

which for larget reduces to
〈

[v(∞)]2
〉

=
q

2γm
. (8.155)

According to (8.152),v depends linearly on the random forcesR(t) and as the
latter are distributed according to a Gaussian, the same will hold for the velocity –
the width is given by (8.155), so we have

P[v(t)] =

(

γm
πq

)1/2

exp[−mv(t)2γ/q] (8.156)

for larget. This is precisely the Maxwell distribution if we write

q = 2kBTγ , (8.157)

so this equation defines the value ofqnecessary to obtain a system with temperature
T. In Chapter 12 we shall discuss Langevin types of equations in a more formal
way, using the Fokker-Planck equation.

The velocity autocorrelation function can also be obtainedfrom (8.152):

〈v(0)v(t)〉 =
〈

v(0)2〉e−γt/m. (8.158)

The absence of a long time tail in this correlation function reflects the
oversimplifications in the construction of the Langevin equation, in particular the
absence of correlations in the random force and the fact thatthe frictional force
does not depend on the ‘history’ of the system.

The results presented here are easily generalised to more than one dimension.
However, including a force acting between the heavy particles causes problems if
this force exhibits correlations with the random force, andEq. (8.157) is no longer
valid in that case. Such correlation effects are often neglected and the systematic
force is simply added to the friction and the Langevin term.

A further refinement is the inclusion of memory kernels in theforces, similar to
the approach in Eq. (8.143). In that case, the random force isno longer uncorrelated
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– it is constructed with correlations in accordance with thefluctuation-dissipation
theorem:64

〈R(0)R(t)〉 =
〈

v2〉γ(t). (8.159)

However, this equation is again no longer valid if external forces are included. The
approach with memory kernels has led to a whole industry of so-called generalised
Langevin-dynamics simulations.64–67

The systematic interaction force between the particles in the solvent will affect
the friction which these particles are subject to through hydrodynamic effects.
This coupling is usually neglected, but a method including these effects has been
proposed and implemented.68 We mention the Dissipative Particle Dynamics
(DPD) which is based on these ideas.69

An algorithm for simple Langevin dynamics can be formulatedstarting from the
methods given in Section 8.4.1.2. Suppose the random force is constant during one
integration step. Denoting the force during the interval[0,h] by R+ and that during
the interval[−h,0] by R−, the random force can directly be included into (8.40):

x(h) [1+ γh/2]+x(−h) [1− γh/2] =

2x(0)+h2 [F(0)+R+/2+R−/2] . (8.160)

Therefore, at each step a new value of the random force duringthe new interval
must be drawn from a Gaussian random generator, and this force is to be used
together with the random force generated at the previous step in order to predict
the new position. This is, however, not always a satisfactory procedure. Normally,
the integration time steph is determined by the requirement that the systematic
force F can be assumed to be reasonably constant over a time intervalh. This
means that the time over which we take the random force to be constant depends
on the smoothness of the systematic force. In fact we would prefer allowing for
a rapidly varying random force combined with a large time step allowed by the
systematic force. This turns out to be possible. Using the statistical properties of
the random force, equations of motion can be obtained which are somewhat similar
to the ones given here, but with more complicated correlations between the random
contributions at subsequent steps – for details see Ref. 70.

It is straightforward to develop a Langevin program for a molecule in a fluid or a
gas, using the simple algorithm presented here. For molecules containing chains of
at most three chemically bonded atoms, torsion is absent, which reduces the number
of forces considerably. Examples are molecules with a tetrahedron conformation,
such as CH4 (methane) and CF4, and two-dimensional molecules. In problem 8.12
the construction of a Langevin molecule for methane is considered.
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8.9 Dynamical quantities – nonequilibrium molecular dynamics

In the molecular dynamics method, the equations of motion ofa classical
many-body system are integrated numerically. There is no reason to restrict the
applicability of this method to systems in equilibrium. MD is the method of choice
for dynamic phenomena in equilibrium or nonequilibrium systems. We speak of
nonequilibrium molecular dynamics (NEMD). We consider twoexamples very
briefly here.

There exists a relation between time correlation functionsand transport
coefficients via the dynamic fluctuation-dissipation theorem.71, 72 The physical
idea behind this theorem is that, in an equilibrium system, particles diffuse and
the dynamics of this diffusion tells us something about their ability to transport
for example heat or charge. Therefore we can measure transport coefficients
by studying the diffusion of the positions or velocities through the system. A
disadvantage of measuring transport quantities in this wayis that diffusion is often
rather slow in equilibrium so that accurate results for transport coefficients are
sometimes hard to obtain. Therefore it is useful to apply a field and measure the
response to the action of that field directly by keeping trackof the motion of the
particles (a thermostat must be used in order to prevent the energy from increasing
steadily as a result of the interaction with the external field). A complication
may arise in connection with periodic boundary conditions,as in that case surface
effects may be induced if the applied force is not compatiblewith the periodicity.
Therefore perturbing forces are often chosen sinusoidal with a period compatible
with the PBC. An example is provided by the determination of the shear viscosity,
caused by fluid layers moving in parallel directions, with different speed, rubbing
against each other. The shear viscosity can be measured73, 74by applying a force in
thex-direction which varies with the coordinatez according to

F(z) = F0cos(kz)x̂ (8.161)

wherek = 2π/L, andL is the linear size of the cubic volume. The shear viscosityη
can then be measured via the mean velocity in thex-direction of the particles with
a given coordinatez:

vx(z) = ρ/(k2η)F0cos(kz) (8.162)

and this average velocity can easily be determined. In orderto improve the estimate
one can determine the shear viscosity with variouskn = 2πn/L to extrapolate to
k→ 0.

A second example of NEMD is the transfer of energy between different degrees
of freedom. This is of interest in detonation waves. A detonation which traverses a
medium of explosive molecules continuously ‘recharges’ itself by new unstable
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molecules falling apart, thereby releasing fragments withhigh velocities. For
an unstable molecule to be disrupted it is necessary for the translational energy
imparted by a collision with a fast fragment to be transferred to bond length
vibrations. For diatomic molecules, the two different degrees of freedom can easily
be separated. Holianet al.39, 40 have carried out MD simulations in which the
translational and vibrational degrees of freedom were given different temperatures
by coupling them to different heat baths which were then turned off or replaced by
a single bath (at the higher temperature). In this way it was possible to determine
energy transfer rates between the different modes.

Exercises

8.1 [C] For coding the leap-frog method [Eq. (8.7)] two arrays are needed, one
containing the velocities at timest = (n+1/2)h, and one for the positions at
t = nh. The same holds for the velocity-Verlet algorithm.

At first sight it might seem that the Verlet algorithm would need more
memory: arrays containing the positions at timest = nh, t = (n−1)h andt =
(n+ 1)h. However, the valuexi [(n−1)h] can be overwritten byxi [(n+ 1)h].
Use this to code the Verlet algorithm such that only two arrays are needed.
Test it for a number of particles moving in one dimension and subject to the
harmonic oscillator potential.

8.2 The neighbour list proposed by Verlet8 needs updating every 10-20 integration
steps and this update requires of the order ofN2 steps for a system containing
N particles. Another bookkeeping device consists of partitioning the system
into cubic volumes and keeping track of which particles are to be found
in each of these volumes. Consider a two-dimensionalL × L system for
convenience. We split this up intoP×P squares of linear sizeL/P. P is
chosen such that the potential can be cut off safely beyondL/P. Suppose
we have for each square a list of particles within that volume. These lists
will change whenever a particle leaves a square and moves to aneighbouring
one. The force evaluation now includes only particle pairs whose members
are either in the same or in neighbouring cells.

(a) How many particles are on average to be found in one square?

(b) How many pair forces are on average taken into account in this ‘cell
method’?

(c) Calculate the gain in speed with respect to the method in which all
pair interactions are taken into account, assuming that theparticles are
distributed more or less homogeneously over the volume.
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8.3 The first molecular dynamics simulations were carried out by Alder and
Wainwright14 for hard spheres. The discontinuity in the potential calls for
a different approach than that used for smooth potentials. The state of the
system is given by the positionsr i and velocitiesvi (i labels the particles)
at some timeti which is usually the time of the last collision experienced
by i. We must calculate the velocity changes for the next pair undergoing a
collision.

We consider the elastic collision between two hard spheres,i and j, which are
moving with velocitiesvi andv j . At time t their positions arer i andr j . After
the collision, velocities arev′i andv′j respectively. The sphere diameter isσ .

(a) Show, using energy and momentum conservation, that the changes in
velocities of the two particles are given by

∆vi = v′i −vi = −∆v j =
r i j (vi j · r i j )

σ2

wherevi j = vi −v j andr i j = r i − r j . For each pair of particles we need to
know at which time they will collide (note that because of PBCeach pair
will indeed collide at some time unless the velocities have very peculiar
values). The collision time for pairi, j is found by

|r i j + tvi j | = σ .

This is a quadratic equation which yields two solutions for the collision
time t. The first time after the current time must be chosen and recorded
as the collision time of pairi j .

The simulation is now constructed as follows. At the beginning, the
particles are released from a lattice with velocities according to a
Boltzmann distribution. For allN(N−1)/2 pairs, the collision times are
calculated and stored in a sorted list. The first element of this list contains
the first collision to take place. For this collision we calculate the new
velocities and positions. Then each pair containing at least one of the two
collision partners is removed from the list. Their new collision times are
calculated and added again to the list in such a way that the latter remains
sorted with respect to the collision times.

(b) How does the simulation time scale with the number of particles?

(c) Explain why the kinetic energy of the hard sphere system is rigorously
constant.
In order to calculate pressures we must adapt the virial theorem to this
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system. The virial theorem for smooth forces reads

βP
ρ

= 1+
1

3NkBT

〈

N

∑
i=1

r i ·Fi

〉

.

The problem is that the force acts over an infinitely small time during
which it has an infinite value. Show that for this case the virial theorem
reads

βP
ρ

= 1+
1

N〈v2〉 t ∑
collisions

vi j · r i j ,

where the sum is over the collisions taking place within the sampling time
t.

8.4 (a) Show that the Verlet algorithm can be written in the form:
(

p(t +h/2)
x(t +h)

)

=

(

p(t −h/2)+hF[x(t)]
x(t)+hp(t −h/2)+h2F[x(t)]

)

.

(b) Find the Jacobian matrix of this map and show that the Verlet algorithm is
symplectic.

8.5 Consider a time evolution operator acting on vectors in two dimensions,
which is described by the symplectic operator exp(tAD):

z(t) = exp(tAD)z(0),

z= (p,x) = (z1,z2).

(a) Show that symplecticity implies that

∂A1

∂ p
= −∂A2

∂x
.

(b) Find a necessary condition to writeAD asJ∇zHD. Show that this condition
is equivalent to that found in (a).

(c) Show thatHD is a conserved quantity.

8.6 In this problem we consider Andersen’s method for keeping the temperature
constant during a MD simulation. In particular we want to findthe momentum
refresh rateR for which the method mimics wall collisions best. The refresh
rate is defined such that the average number of velocity updates during a time
∆t is equal toR∆t. Suppose the wall of the system is at temperatureT, but the
system itself is at a temperatureT + ∆T.
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(a) Show that the rate at which heat is absorbed by the system is given by

∆Q
∆t

∼ κV1/3∆T,

whereκ is the thermal conductivity, defined by∇T = κ j , wherej is the
heat flowing through a unit area per unit time.

(b) Show that the rate at which heat is transferred to a systemwithout walls in
Andersen’s method is equal to

∆Q
∆t

∼ RNkB∆T.

(c) Derive from the two equations obtained the optimal rate:

Ropt ∼
κ

n1/3kBN2/3

wheren = N/V.

8.7 [C] In this problem we consider a program for simulating nitrogen molecules
in microcanonical MD using the method of constraints. The equations of
motion are given in Section 8.6.2.2 [Eqs. (8.124)]. The Lagrange parameters
λ occuring in these equations are determined by requiring theconstraint to be
satisfied by the positions as predicted in the Verlet algorithm. These positions
are given in the form

r i(t +h) = ai +biλ .

The list of particles is grouped into pairs of atoms forming one nitrogen
molecule: atoms 2l −1 and 2l belong to the same molecule. The integration
is carried out in a loop over the pairsl – each pair has its own Lagrange
parameterλl . For reasonable time step sizes the rootsλl of the constraint
equation are real. The smallest of these (in absolute value)is to be chosen.
The forces can be calculated as usual, taking only interactions between
atoms belonging to different molecules into account. Parameters for the
Lennard–Jones interaction areε = 37.3 K, σ = 3.31 Å andd = 0.3296σ .

Periodic boundary conditions are implemented with respectto the centre of
mass of the molecules. If a molecule leaves the system cell itis translated
back into it (as a whole) according to PBC. It is to be noted that determining
the momentum from the positions att + h and t − h after such a translation
can cause severe errors: this should be donebeforemoving the molecule back
into the cell.
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(a) Implement this algorithm for liquid nitrogen.

The program can be checked by verifying whether the kinetic energies
associated with translational and vibrational degrees of freedom satisfy
equipartition. The total kinetic energyKtot can be determined as in the
argon case by taking allatomic velocities into account. From this, the
temperature can be determined asNkBT = 4/5Ktot whereN is the number
of molecules. The translational kinetic energyKtrans can be calculated by
taking into account the molecular velocities (sums of velocities of the two
atoms) and the temperature can be found from this asNkBT = 3/2Ktrans.
The average temperatures should be the same for both procedures.

Check whether this requirement is satisfied.

(b) The virial theorem applies as usual – molecular forces should be used
and the separation occuring in this theorem is the separation between
the centres of mass of the molecules. The correction term is evaluated
usingg≡ 1 for the correlation function beyond the cut-off distance,where
it is assumed thatg is independent of distance but also of the angular
configuration of the molecular pairs.

(c) Calculate the pressure also using the atomic forces (including the
constraint forces), and compare the result with (b).

(d) Calculate the pressure for various temperatures and densities. Cheung
and Powles46 give extensive data on thermodynamic quantities. The table
below gives some of the data (in reduced units) obtained by Cheung and
Powles.

ρ T P U
0.6964 2.86 8.35 −17.16
0.6964 1.72 1.29 −18.68
0.6220 2.70 2.50 −15.82
0.6220 2.17 0.27 −16.30.

8.8 [C] In this problem, we consider the implementation of the Andersen meth-
od for simulating a system in the canonical ensemble. Remember that the
preferred energy estimator for the Verlet/leap-frog algorithm is

E = ∑i

[pi(t +h/2)+pi(t −h/2)]2

8
+V[R(t)],

whereR is the combined position coordinate of the system which consists of
particles of massm= 1. In view of the form of this estimator, it seems sensible
to update the momenta at the same time instances for which we calculate the
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positions, and it is convenient to define thei-th component of the momentum
coordinate at timet:

pi(t) = [pi(t +h/2)+pi(t −h/2)]/2.

(a) Using the leap-frog/Verlet algorithm, show that

pi(t +h/2) = pi(t)+hFi/2.

The refreshed momentapi(t) are drawn from a Maxwell-Boltzmann
distribution, and the momenta at timet + h/2, which are needed in the
Verlet/leap-frog algorithm are then calculated using thislast formula.

(b) Implement the Andersen update algorithm for argon and compare the
results with the microcanonical program.

(c) Now suppose that the momenta are refreshed ateverystep. Show that in
that case we have

r i(t +h) = r i(t)+h2Fi/2+hζi(t),

whereζi(t) is thei-th random momentum component generated according
to the Maxwell-Boltzmann distribution. This is a kind of Langevin
equation. Discuss the difference with the Langevin equation described in
Section 8.8.

8.9 [C] In this problem we consider the implementation of the Nosé-Hoover
thermostat in the microcanonical MD simulation for Lennard–Jones argon
described in Section 8.3. The extension is straightforward– the equations are
given in Section 8.5.1.1 and 8.5.1.2. You can verify now thatthe behaviour of
the Nosé-Hoover thermostat is often nonergodic. ForT = 1.5 andρ = 0.8 the
behaviour is as it should be for coupling constantQ = 1. You can check that
the standard deviation in the temperature is in accordance with Eq. (8.81). For
lower temperatures, likeT = 0.85, ρ = 1.067, the temperature exhibits large
oscillations. The period of these oscillations depends onQ.26

8.10(a) Verify that when we takeg = 3N instead ofg = 3N + 1 in the derivation
of the Nosé-Hoover thermostat, the probability density for configurations
(P,R) turns out to be:

ρ(P,R) =
1

3N

(

2πQ
kBT

)1/2

exp

[−H0(P,R)(3N+1)

3NkBT

]

.

(b) For this choice, verify that quantities sampled in a simulation yield
averages as given in Eq. (8.94).



Exercises 275

8.11 [C] In this problem, a code for evaluating the potential felt bythe particles in
a two-dimensional Coulomb (or gravitational) system is developed, using the
tree-code method of Section 8.7.2.

Although experienced programmers would be tempted to startbuilding tree
structures using pointers and recursive programming for this problem, it can
be dealt with using more pedestrian methods. The point is that the squares
can be coded by two integersNX, NYwhich are considered as bit-strings. The
first of these contains information about thex-coordinate of the square and the
second about they-coordinate. They are ordered linearly: the leftmost column
of squares hasNX = 0, the rightmost columnNX = 2n−1 etc., and a similar
coding is adopted for the rows. If squares are neighbours, their respective
NX andNY-codes should differ at most by 1 (and they should not be equal).
The codes of the parents can be found simply by shifting the bits of NX and
NY one position to the right (least significant direction) and it can therefore
easily be checked in the program whether the parents of the squares under
consideration are neighbours or not.

The calculation of the multipole moments in each box [Eq. (8.140] is best
done in a loop over the particles, recording its contribution to all the multipole
coefficients of the square it belongs to. Also, the calculation of the interactions
[Eq. (8.139)] can be done in a loop over the particles, by executing for each
particle a loop over the interaction list of the square to which it belongs.

Proceeding this way, it is not necessary to keep for each square a list of the
particles belonging to it. However, at the finest level, the interactions between
particles within the same square and between particles in neighbouring boxes
must be calculated directly so only for the last step do we need such a list for
each square. If you want to economise on memory, you might create a linked
list for each square containing the indices of the particlesin it, but for a test
you may use static arrays.

Compare the results for the tree code with those of a direct calculation,
varying the number of terms in the multipole expansion.

8.12 [C] In this problem we consider a simulation of a methane molecule using the
Langevin approach. Methane consists of a carbon atom sitting at the centre
of a tetrahedron whose vertices are occupied by four H atoms.The C–H
bond has a preferred interatomic distance of 2.104a0. The stretch-potential
associated with the bond length varies as

Vstretch=
1
2

κ(l − l0)
2; l0 = 2.104a0.
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The force constantκ has the valueκ = 0.30 (in atomic units). This force acts
on both the carbon and the hydrogen atoms and is directed along the C–H
bond.

The preferred H–C–H angle is 109◦ and the potential for this bending angle
is

Vbend= −λ cos(ϕ −ϕ0)
2; ϕ0 = 109◦,

with a force constantλ = 0.74. This force lies in the H–C–H plane, and
acts on the two H atoms and on the C atom. The forces on the H-atoms
are perpendicular to the C–H bonds, and the bending force on the C atom is
directed along the bisecting line of the H–C–H angle.

These two ‘force fields’, bending and stretching, specify the force on each of
the atoms. To find the forces, given the positionrC of the carbon atom and the
four positionsrH of the hydrogen atoms, you calculate first the forces on the
hydrogen atoms only. The stretch forces can easily be found by calculating the
vectorrCH = rH − rC. The bending force is slightly more difficult. Denoting
the two hydrogen atoms of a H–C–H chain as H1 and H2, calulaterCH1 and
rCH1. Then calculate the dot product between these two vectors. From this,
the cosine of the bending angle can be found. Moreover, the direction of the
force can be found from the cross-product ofrCH1 and rCH1: the bending
force on H1 is then perpendicular to this cross productand to the vectorrCH1,
and similarly for H2. Knowing the forces on the hydrogen atoms, you can
calculate their sum. The force on the carbon atom is then simply the opposite
of this, as the sum of all the inter-particle forces adds up tozero.

(a) [C] Write routines for calculating the forces on the atoms and use these
in an ordinary (microcanonical) MD simulation of the atom. To check the
program, you can put the H-atoms on the vertices of a tetrahedron with the
C-atom in the centre. If you release the molecule from this conformation
with a CH-distance slightly smaller or larger than the equilibrium distance
of 2.104 a0, the molecule should stretch and contract isotropically inan
oscillatory fashion.

(b) [C] Keep the temperature of the molecule constant by rescalingthe
velocities after each time step. Determine the average total energy of the
molecule.

(c) [C] Add a Langevin thermostat to the simulation, for example byrescaling
the velocities after every time step. Use the algorithm given in the
last section for solving the equations of motion with friction. Add
a Langevin random force, drawn from a Gaussian distributionwith a
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width
σ2 = q/h

to the inter-particle force. Check that the temperature is given by

T = 1/(2γ).

The temperature is determined from the kinetic energy – we have

T =
15
2

kBT.

Determine the average total energy and compare the result with the
program of (b).
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9

Quantum molecular dynamics

9.1 Introduction

In the previous chapter we considered systems of interacting particles. They were
treated as classical particles for which the interaction potential is known. We had to
solve the classical equations of motion to simulate the behaviour of such a system at
some nonzero temperature. Had we added frictional forces, the system would have
evolved towards the ground state. In this chapter we discussmethods for simulating
interacting atoms and molecules using quantum mechanical calculations. In fact,
we consider the nuclei on a classical level but use quantum mechanics for the
electronic degrees of freedom. Again, we can use this approach either to simulate
a system of interacting particles at a finite temperature, orto find the ground state
(minimum energy) configurations of solids and of molecules.

In Chapters 4 to 6 we studied methods for solving the electronic structure
of molecular and solid state systems with a static configuration of nuclei
(Born-Oppenheimer approximation). Knowledge of the electronic structure
includes knowledge of the total energy. Therefore, by varying the positions of
the nuclei, we can study the dependence of the total energy onthese positions.
The energyE(R1,R2, . . . ,RN) as a function of the nuclear positionsRi is called
thepotential surface. As a simple example, consider the hydrogen molecule. We
assume that the molecule is not rotating, so that the nuclearmotion is a vibration
along the molecular axis. The only relevant parameter describing the relative
positions of the two nuclei is their separationX. The force between the nuclei
is then given byF = −∂E(X)/∂X (see Figure 9.1). These forces are usually
parametrised and the parameters are fixed by comparison withquantum mechanical
calculations for a few configurations, or by comparison withexperimental results.
This parametrised form can then be used to calculate the motion of the nuclei on a
classical level, for example to find the equilibrium conformation of the molecule,
which is the configuration of nuclei which minimises the total energy. This is called
the method offorce fields; it is often used by chemists.
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Figure 9.1: The effective potential of the hydrogen nuclei in the hydrogen molecule as a
function of the separationX. A harmonic potential and a Morse potential are fitted to the
bottom of the well.

The parametrisation of the forces is often carried out for small deviations of
the configuration from the equilibrium conformation, so that the potential energy
can be approximated quite accurately by harmonic potentials, such as stretching,
bending, and torsional potentials, encountered in Section8.6.1. The motion can
then be decomposed into normal modes, by defining new coordinates in terms
of which the system can be described as a collection of uncoupled harmonic
oscillators. This problem then has an analytic quantum mechanical solution,
leading to discretised energy levels which can be compared with experiment.
So, although the force field method treats the nuclear motionclassically, we can
obtain quantum mechanical solutions for thenuclear motion from it (within a
Born-Oppenheimer approach).

In our example of the hydrogen molecule we can fit the bottom ofthe potential
well shown in Figure 9.1 by a harmonic potential. Since the well is rather
asymmetric, a more reliable fit is provided by the Morse potential, for which
the spectrum is also known analytically (see problem A.4). For the harmonic
approximationκX2/2, the angular frequencyω =

√

κ/m and the spectral levels
are given asℏω(n+ 1/2). For the hydrogen molecule, the mass to be used is the
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reduced mass, which is about half the proton mass (i.e. 918.8electron masses if we
neglect the mass of the two electrons), and we findκ = 0.3850 (in atomic units)
so that the frequency becomesνvibr = 13.64× 1013Hz, to be compared with the
experimental valueνvibr = 12.48×1013Hz.1 †

The harmonic approximation works well for low energies. It is used for
stretch, bend and torsional energies; see also Section 8.6.1. For higher energies,
anharmonic terms can be included in the potentials – see the Morse potential in
the hydrogen example. For energies much higher than the spacing between the
energy levels, quantum effects do not affect physical properties and a fully classical
description is appropriate.

For interacting molecules the force field procedure becomesunfeasible because
we would have to calculate energies and variations in energies for all possible
relative positions and orientations for pairs or sets of twoand more molecules,
which becomes exceedingly tedious and (computer) time consuming. Therefore, in
these systems, the intra-molecular interactions are modelled by force fields and the
inter-molecular interactions by atomic pair-interactions as we have seen throughout
the previous chapter. Although this approach yields ratheraccurate results, in
particular when the density is not too high, the use of these pair-potentials is not
justified for dense systems. Moreover, the energy differences between different
atomic conformations are often very small, so that high accuracy is needed for
predicting equilibrium structures.

To achieve a good accuracy in these cases, it is necessary to calculate forces and
energies from quantum electronic structure calculations;if this is unfeasible for
all possible configurations, we take the more economical approach of calculating
forces and energies only for those configurations which actually occur in the
simulation. We must therefore perform an electronic structure calculation at
every molecular dynamics time step, and derive theforce on the nuclei from that
calculation. The word force is emphasised because the methods described in
the first few chapters of this book aimed at calculating the energies and not the
forces. Of course, it would be possible to derive the forces from the energies by
studying the variations in the latter with nuclear positions but that would require an
exceedingly large number of energy calculations. It is better therefore to try and
find methods for calculating the forces directly.

The energy of a system of electrons in its ground stateψG for a fixed
configuration of nucleiS = (R1, . . . ,RM), whereRn is the position of then-th

†In atomic units, the unit of frequency isαc/a0 = 4.13414× 1014Hz; α is the fine structure
constant.
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nucleus, is given by†

E =
〈ψG|H(S)|ψG〉

〈ψG|ψG〉
. (9.1)

The (classical) force on nucleusn is given as the negative gradient∇n of the energy
with respect to theRn:

Fn = −∇nE(S) = −∇n

[〈ψG|H(S)|ψG〉
〈ψG|ψG〉

]

. (9.2)

It should be noted that there is not only the explicitS-dependence in the
Hamiltonian, but the ground state is evaluated for the Hamiltonian with a particular
configurationS– therefore the ground state also depends onS.

The Hellmann-Feynman theorem,2, 3 which we discussed for the single-
parameter case in Section 5.3, states that we can neglect this dependence: ifΨG

is an eigenstate of the HamiltonianH(S), we have

(〈ψG|ψG〉)2∇nE =
[

〈(∇nψG)|H|ψG〉+ 〈ψG|(∇nH)|ψG〉+ 〈ψG|H|(∇nψG)〉
]

〈ψG|ψG〉−

〈ψG|H|ψG〉
[

〈(∇nψG)|ψG〉+ 〈ψG|(∇nψG)〉
]

, (9.3)

where we have omitted theS-dependence of the Hamiltonian. Except for the term
including〈ψG|(∇nH)|ψG〉, all the terms on the right hand side cancel – this follows
directly from the fact thatHψG = EGψG and from the fact thatH is Hermitian. So
we are left with

∇nE =
〈ψG|(∇nH)|ψG〉

〈ψG|ψG〉
. (9.4)

In practice we do not know the exact ground state, but we have only a
variational approximation to it. Therefore, in actual calculations, the Hellmann-
Feynman theorem does not predict the actual forces exactly and the variation
of the (approximated) ground state wave function should be taken into account
as well. Nevertheless, the Hellmann-Feynman theorem is used quite often for
predicting ground state configurations, because the inclusion of other contributions
is cumbersome.

9.2 The molecular dynamics method

In principle, all the ingredients for a molecular dynamics simulation using forces
calculated from the quantum electronic structure are at ourdisposal. However, at

†We use the letterS in order to avoid confusion withR= (r1, . . . , rN).
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each step in the MD simulation, a full electronic structure calculation is required,
rendering the method very computer time consuming. In 1985,Car and Parrinello
proposed a method in which not only the nuclear positions, but also the electronic
states are calculated using MD algorithms. This results in adescription of the
system in which the electronic structure does not, in general, relax completely to the
ground state of the actual configuration of nuclei; however,the calculated electronic
structure will follow the exact one rather closely. We startthe description of the
Car-Parrinello method by recalling the energy functionalsof the Hartree-Fock and
the density functional theory (see Chapters 4 and 5).

The ground state Hartree-Fock wave function forN electrons can be written as
the Slater determinant

ΨG(R) = det[ψk(xi)] =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

...
...

...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (9.5)

where theψk are one-electron spin-orbitals;xi is the combined spin and orbital
coordinate of particlei. The spin-orbitals should satisfy the orthonormality
requirements

〈ψk|ψl 〉 = δkl . (9.6)

The energy is given in terms of theψk as

EHF = ∑
k

〈ψk|h|ψk〉+
1
2∑

kl

[〈ψkψl |g|ψkψl 〉− 〈ψkψl |g|ψl ψk〉] . (9.7)

h is the one-electron Hamiltonian andg is the electron-electron Coulomb repulsion
– see Chapter 4. Minimisation of this expression with respect to theψk subject to
the constraint (9.6) requires the Fock equation to be satisfied:

Fψk = ∑
l

Λklψl (9.8)

with

Fψk =

[

−1
2

∇2−∑
n

Zn

|r −Rn|

]

ψk(x)+
N

∑
l=1

∫

dx′ |ψl (x′)|2
1

|r − r ′|ψk(x)−

N

∑
l=1

∫

dx′ ψ∗
l (x′)

1
|r − r ′|ψk(x′)ψl (x). (9.9)
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After a unitary transformation of the set{ψk} (see Section 4.5.2 and problem 4.7),
Eq. (9.8) transforms into

Fψk = εkψk. (9.10)

UsingFψk = δEHF/δψk, we can rewrite this as

δEHF

δψk(x)
= εkψk(x). (9.11)

The eigenvaluesεk are the Fock levels; the energy can be calculated from these.
In density functional theory the energy can be written as a function of the ground

state density, which in turn is written in terms of the basis functions as

n(r) =
N

∑
k=1

|ψk(r)|2, (9.12)

assuming that the states are ordered according to increasing energy. We have seen
already in Chapter 5 that there is no direct expression of thetotal energy as a
function of the density, as the form of the kinetic energy functional of the density
is unknown. The energy can however be obtained indirectly via the solutionsψk of
the Kohn-Sham equations:

−1
2

∇2ψk(r)+Veff(r)ψk(r) = εkψk(r) (9.13)

where

Veff(r) = Vion(r)+
∫

d3r ′
n(r ′)
|r − r ′| +Vxc[n](r). (9.14)

The exchange correlation potentialVxc on the right hand side is the derivative of the
exchange correlation energyExc with respect ton(r).

In terms of theψk, the total DFT energy is written as

EDFT = −∑
k

1
2

〈

ψk
∣

∣∇2
∣

∣ψk
〉

+∑
k

〈ψk|Vion|ψk〉+

1
2

∫

d3r d3r ′
n(r)n(r ′)
|r − r ′| +Exc[n](r). (9.15)

The Kohn-Sham equations can be written as

δEDFT

δψk(r)
= εkψk(r), (9.16)

i.e. the same form as (9.11).
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Summarising, the total energy, which is the electronic energy (eitherEDFT or
EHF) plus the electrostatic energy of the nuclei, can be writtenas a functional
depending on the orbitalsψk and of the nuclear coordinates, collected together
in the variableS:

Etot = Etot({ψk},S) , (9.17)

where the orbitalsψk form an orthonormal set. In both the Hartree-Fock and the
density functional theory approach we minimise this energywith respect to the
orbitalsψk, according to the variational principle. Usually, a finite basis set{χr} is
used, in terms of which the orbitals are given as

ψk(r) = ∑
r

Crkχr(r), (9.18)

so that the energy can be written in terms of theCrk andS:

Etot = Etot ({Crk},S) . (9.19)

As the basis functions are often centred on the atomic nuclei, they may contain an
explicit S-dependence. Car and Parrinello used the form (9.17) [or (9.19)] with the
constraint (9.6) as a starting point for finding the equilibrium conformation (i.e. the
minimal energy conformation) by locating the minimum of thetotal energy as a
function of theψk (or theCrk) and the nuclear coordinatesS. This means that the
electronic structure does not have to be calculated exactlyfor each conformation
of nuclei, as both the electronic orbitals and the nuclear positions are varied
simultaneouslyin order to locate the minimum.

The minimisation problem of the energy can now be consideredas an abstract
numerical problem, and any minimisation algorithm can in principle be applied.
One possible approach is the simulated annealing method,4 which requires only
the energy to be calculated – no force calculations are needed. However,
Car and Parrinello assigned, aside from the time dependenceof the nuclear
coordinates, afictitious time-dependence to the electronic wave functions (or, in
a linear variational calculation, theCrk), and constructed a dynamical Lagrangian
including the electronic wave functions and the nuclear coordinateSwith their time
derivatives as the variables. This leads to a classical mechanics problem with the
energy (9.17) acting as a potential. If a friction term is then added to the equations
of motion of this classical system, the degrees of freedom will come to rest after
some time, with values corresponding to the minimum of the classical potential,
which is the energy of the quantum system at the equilibrium configuration of the
nuclei. It is also possible to put the frictional force equalto zero in order to simulate
the system at a nonzero temperature.
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The Lagrangian of the classical system reads

L({ψk},S) =
µ
2 ∑

k

ψ̇2
k +∑

n

Mn

2
Ṙ2

n−Etot(ψk,S)+∑
kl

Λkl 〈ψk|ψl 〉 . (9.20)

µ is some small mass (see below), andMn is the actual mass of then-th nucleus,
with position Rn. The last term on the right hand side is necessary to ensure
orthonormality of theψk – theΛkl must always be calculated from this requirement.
Car and Parrinello suggested that this Lagrangian can be used not only for finding
the minimum of the total energy, but also for performing realmolecular dynamics
simulations at finite temperature. It will be clear that in general, when the nuclei
move, the method might not have produced the minimal energy of the electrons
before the next nuclear displacement: the calculated electronic structure will ‘lag
behind’ the nuclear motion. Although this retardation effect will occur in reality
(the Born-Oppenheimer approximation neglects the fact that the electrons do not
have the opportunity to adapt themselves to the changing nuclear configuration at
any time), there is no reason to believe that the retardationeffect implied by the
Car-Parrinello Lagrangian is related to real physical behaviour.

The details of the kinetic energy of the electrons do not matter: what matters
is the fact that the massµ used in this kinetic energy should be sufficiently small
to enable the electronic wave function to adapt reasonably well to the changing
nuclear configurations – this mass should therefore be much smaller than the
nuclear masses. The choice of the massµ is determined by a trade-off between
accuracy and efficiency. If we include friction into the equations of motion, the
particular values of neither electronic nor nuclear massesmatter, as we shall always
end up with zero kinetic energy, at the minimum of the total energy of the system
(which is the potential of the Car-Parrinello Lagrangian),though different choices
of these masses lead to different rates of convergence towards the energy minimum.

Let us write down the equations of motion for the Car-Parrinello Lagrangian. We
must take the orthogonality constraint (9.6) into account using Lagrange parameters
Λkl(t). The Euler-Lagrange equations now read

µψ̈k = −∂Etot

∂ψk
+2∑

l

Λklψl (r) (9.21)

and

MnR̈n = −∂Etot

∂Rn
+∑

kl

Λkl
∂ 〈ψk|ψl 〉

∂Rn
. (9.22)

The last term on the right hand side of the last equation vanishes if the basis
functions do not depend on the nuclear positionsS. As we know the total energy
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in both DFT and HF in terms of the orbitalsψk and Rn, the energy derivatives
occuring in these equations can be evaluated – see the next section.

Instead of assigning a kinetic energy to the orbitalsψk, leading to Eq. (9.21), we
can assign a kinetic energy to the expansion coefficientsCrk. In that case, Eq. (9.21)
becomes

µC̈rk = −∂Etot

∂Crk
+2∑

l

Λkl ∑
s

SrsCsl. (9.23)

If µ is allowed to depend onr andk, this equation can be made equivalent to (9.21)
but, as argued above, the details of the kinetic energy do notmatter that much
as long as the electronic degrees of freedom can adapt themselves to the nuclear
positions.

If a frictional term is added to the equations of motion, the solution will become
stationary after some time, and the left hand side vanishes.Equation (9.21) then
becomes an equation similar to the Fock and the Kohn-Sham equations [(9.11) and
(9.16)], except for the eigenvaluesεk being replaced by the matrix elementsΛkl .
This is precisely the same difference as we have encounteredin the diagonalisation
of the Fock-matrix (see Section 4.5.2 and above): forψ̈k = 0, Eq. (9.21) reduces to
an eigenvalue equation after an appropriate unitary transformation of the set{ψk}
and of the Lagrange parametersΛkl.

The values of the Lagrange parametersΛkl depend on time – they must be
calculated at each MD step such that they guarantee the orthonormality constraint
(9.6). This calculational procedure is related to the particular integration scheme
used (the Verlet algorithm in our case). In Section 8.6.2 we have encountered this
problem already. Car and Parrinello have used the iterativeSHAKE-algorithm of
Ryckaertet al.5 (see Section 8.6.3) to solve for theΛkl . We return to the problem
of calculating theΛkl in more detail below.

If the nuclear equilibrium configuration is searched for, starting from an initial
configuration which might be far off the equilibrium, we are likely to end up in a
local energy minimum instead of the global minimum. In this case, we might use
the simulated annealing method4 which allows the system to hop over local energy
barriers to arrive at the global minimum.

It is interesting to compare the equations obtained here with the time-dependent
Hartree-Fock (TDHF) equations. These are obtained from a variational treatment
of the time-dependent Schrödinger equation using Slater determinants constructed
from time-dependent spin-orbitals. The time-dependent Schrödinger equation can
be derived as the stationarity condition of the functional

S=

∫

dt
∫

dX Ψ∗(X, t)

(

iℏ
∂
∂ t

−H

)

Ψ(X, t) (9.24)
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with X = (x1, . . . ,xN). By taking for Ψ(R, t) a Slater determinant with
time-dependent orbitalsψk(x, t), the stationarity condition leads to the following
equation for the spin-orbitals:6

iℏ
∂
∂ t

ψk(x, t) = Fψk(x, t). (9.25)

The TDHF equations lead to a conservation law for the overlapmatrix Skl(t) =
〈ψk(t)|ψl (t)〉. Hence, if we choose an orthonormal set to start off with att = 0, the
set will remain orthonormal in the course of time.

In comparison with the MD equation of motion for the electrons, Eq. (9.21), we
see that the second derivative with respect to time is replaced by a first order one,
and that there is no Lagrange parameter as a result of the overlap matrix being
conserved.

Time-dependent Hartree-Fock is used for studying the quantum dynamics of
scattering processes, for example in nuclear physics and instudies of scattering
of electrons from atoms.

9.3 An example: quantum molecular dynamics for the hydrogen
molecule

In this subsection we work out an application of the Car-Parrinello method to the
hydrogen molecule in some detail. Our example is based on theHartree-Fock
calculation of the hydrogen molecule considered in Chapter4, in particular
problem 4.9. There are two spin-orbitals with opposite spinand the same orbital
part. Therefore, the wave function is completely specified by the form of this
orbital. We use the GTO basis set of problem 4.9 with eight basis s-functions
χr , four on each atom.

The molecular dynamics method can be restricted to the electronic structure part
of the total energy, keeping the nuclear positions fixed. We do this first – later we
shall extend the method to include nuclear displacements.

9.3.1 The electronic structure

The energy can be written as

Etot = 2∑
rs

CrhrsCs+ ∑
rstu

CrCsCtCu〈rt |g|su〉+
1
X

. (9.26)

Note that there is no indexk as the two electrons occupy only one orbital. The Fock
matrix F is given by

Frs = hrs +∑
tu

CtCu〈rt |g|su〉 (9.27)
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(all sums over indicesr,s, t,u run over the basis states, so in our case from 1 to 8).
The normalisation condition for the orbital is

∑
rs

CrSrsCs = 1. (9.28)

Therefore, the equation of motion for theCr (without friction) is given by

µ
4

C̈r = −∑
s

hrsCs−∑
stu

CsCtCu〈rt |g|su〉−λ ∑
s

SrsCs =

−∑
s
[Frs + λSrs]Cs. (9.29)

We shall use the Verlet algorithm for solving the equations of motion. In this
form, they read forµ = 4:

Cr(t +h) = 2Cr(t)−Cr(t −h)−h2∑
s
[Frs + λSrs]Cs(t). (9.30)

Suppose we know theCr(t) and theCr(t − h). The solution to the equation of
motion proceeds in two stages. First we calculate

C̃r(t +h) = 2Cr(t)−Cr(t −h)−h2∑
s

FrsCs(t). (9.31)

Now we must add an amount−λSrsCs(t) to this solution, whereλ is determined
by the requirement that the normalisation condition (9.28)holds:

∑
rs

C̃r(t +h)SrsC̃s(t +h)−2λ ∑
rst

SrsC̃r(t +h)SrtCs(t)+

λ 2 ∑
rstu

SrsCs(t)Srt StuCu(t) = 1. (9.32)

This is a quadratic equation inλ , of which the lowest positive root is needed.
The Verlet solution of the equation of motion is now fully defined.

Modifying the HF program of Chapter 4 to calculate the electronic structure is
relatively easy, as the Fock matrix and the overlap matrix are calculated already in
this program.

– Programming exercise –

Take the program of problem 4.9 and replace the self-consistency iteration by a
molecular dynamics algorithm with friction, using the Verlet algorithm.

A frictional force−γĊr is included using the algorithm given in Section 8.4.1.2
in order to let the system evolve towards the energy ground state.
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Figure 9.2: Evolution of the energy in a Car-Parrinello simulation of the electronic structure
of the hydrogen molecule with separationX = 1 between the nuclei, with frictional forces
included.

Check A reasonable value for the time step is 0.1 (in atomic units) and for
the frictional constantγ the value 1 (in atomic units) is chosen. In Figure 9.2,
the energy as a function of the ‘time’ is shown. It is seen thatfor a nuclear
separation ofX = 1 the energy tends to−2.0785476 a.u., the same value as
was found in problem 4.9.

9.3.2 The nuclear motion

In this section we describe the inclusion of the nuclear forces into the equations
of motion and apply this to the vibration of the hydrogen molecule. Essentially,
what we have to do is to calculate the derivative of the total energy with respect
to the nuclear separationX. The results obtained using the Car-Parrinello HF
method are exactly equivalent to those obtained by the forcefield method as
we have a pair potential only; we describe it here only to illustrate the method.
There are two contributions to this derivative. First of all, the energy contains a
Coulomb interaction 1/X between the two nuclei and the electron Hamiltonian
contains Coulomb attractions between the electrons and thenuclei, which depend
on X. There is however yet another contribution from the dependence of the basis
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functions χr on X: remember the basis functions are centred on the nuclei, so
varying the positions of the latter changes the matrix elements of the Fock matrix
and the overlap matrix. In the following we shall not distinguish explicitly between
all these contributions, but it is useful to know that contributions to the forces
due to the variation of the basis functions with the nuclear positions are called
Pulay forces.7 If the basis functions do not depend on the nuclear coordinates, as
is the case with plane wave basis sets, which are often used inconjunction with
pseudopotentials, Pulay forces are absent. We shall now calculate the derivatives
of the matrix elements of the Fock matrix and the overlap matrix with respect to
the nuclear separation in the hydrogen molecule.

Expressions for the various matrix elements were given in Section 4.8. We use
notations similar to those used in that section. The overlapmatrix was given as

Sα ,A;β ,B = 〈1s,α ,A|1s,β ,B〉 =

(

π
α + β

)3/2

exp

[

− αβ
α + β

|RA−RB|2
]

, (9.33)

and we see that if both basis functions are centred on the samenucleus (A= B), this
matrix element does not depend onX. For two basis functions centred on different
nuclei,|RA−RB| = X, and we find

d
dX

〈1s,α ,A|1s,β ,B〉 = −2
αβ

α + β
XSα ,A;β ,B. (9.34)

The matrix elements of the kinetic energy operator for two orbitals centred on
the same atom are again independent ofX, and for the elements between basis
functions on different nuclei we have, usingσ = αβ/(α + β ) (see Section 4.8):

〈

1s,α ,A

∣

∣

∣

∣

−1
2

∇2

∣

∣

∣

∣

1s,β ,B

〉

=
[

3σ −2σ2X2]Sα ,A;β ,B. (9.35)

Taking the derivative with respect toX we find

d
dX

〈

1s,α ,A

∣

∣

∣

∣

−1
2

∇2

∣

∣

∣

∣

1s,β ,B

〉

=

−4σ2XSα ,A;β ,B +
[

3σ −2σ2X2] d
dX

Sα ,A;β ,B. (9.36)

The Coulomb matrix element is given by
〈

1s,α ,A

∣

∣

∣

∣

∑
c

1
rc

∣

∣

∣

∣

1s,β ,B

〉

= θ ∑
c

Sα ,A;β ,BF0(tc) (9.37)
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with θ = 2
√

(α + β )/π, tc = (α + β )(PC)2 whereP is the point

RP =
αRA+ βRB

α + β
, (9.38)

PQ= RP−RQ, andC is the position of the nucleus – the sum∑c is over the two
nuclei.F0 given in Section 4.8 – its derivative is given by

F ′
0(t) =

e−t −F0(t)
2t

(9.39)

for t 6= 0, andF ′
0(0) = −1/3. Taking the derivative, we obtain for two basis

functions centred on the same nucleus:

d
dX

〈

1s,α ,A

∣

∣

∣

∣

∑
c

1
rc

∣

∣

∣

∣

1s,β ,B

〉

= 2θSα ,A;β ,BF ′
0(t)X(α + β ) (9.40)

with t = (α + β )X.
For basis functions centred on different nuclei, we have

d
dX

〈

1s,α ,A

∣

∣

∣

∣

∑
c

1
rc

∣

∣

∣

∣

1s,β ,B

〉

=

θ
d

dX

(

Sα ,A;β ,B

)

∑
c

[F0(t1)+F0(t2)]+

2
θ

α + β
Sα ,A;β ,B

[

F ′
0(t1)α2 +F ′

0(t2)β 2]X. (9.41)

where

t1 =
α2X2

α + β
; (9.42a)

t2 =
β 2X2

α + β
. (9.42b)

Finally the four-electron matrix element is given by

〈α ,A;γ ,C|g|β ,B;δ ,D〉 = ρSα ,A;β ,BSγ ,C;δ ,DF0(t) (9.43)

with

t =
(α + β )(γ + δ )

α + β + γ + δ
(PQ)2, (9.44)

with RP as given above and

RQ =
γRC + δRD

γ + δ
, (9.45)
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and

ρ = 2

√

(α + β )(γ + δ )

π(α + β + γ + δ )
. (9.46)

From this form it follows directly that

d
dX

〈α ,A;γ ,C|g|β ,B;δ ,D〉 = ρ
(

d
dX

Sα ,A;β ,B

)

Sγ ,C;δ ,DF0(t)+

ρSα ,A;β ,B

(

d
dX

Sγ ,C;δ ,D

)

F0(t)+

ρSα ,A;β ,BSγ ,C;δ ,DF ′
0(t)

(α + β )(γ + δ )

α + β + γ + δ
2(PQ)2

X
(9.47)

where we have used the fact that(PQ) is proportional toX in order to obtain the
last term on the right hand side.

Using these matrix elements, it is possible to construct thederivatives of the Fock
matrix and of the overlap matrix with respect toX, and this gives the force onX
which is needed in the Verlet algorithm. Note that the nuclear kinetic energy is
given by

Ekin, nucl =
Mn

2

[

(

Ẋ
2

)2

+

(

Ẋ
2

)2
]

=
Mn

4
Ẋ2. (9.48)

Therefore, in the equation of motion forX, half the proton mass (that is the reduced
mass of the two-nuclei) has to be used.

Only the ratio of the masses occurring in the electronic and nuclear kinetic energy
is relevant – changing the time steph corresponds to an overall rescaling of the
masses. In fact, because the mass occurs in the equation of motion in combination
with an acceleration (or, in the kinetic energy, with a velocity squared), rescaling
the mass by a factorb and time with a factor

√
b does not change the calculated

motion.

– Programming exercise –

Extend the program of the previous subsection to include thenuclear motion.

Check1 Take the nuclear mass e.g. 1000 times larger than the electron mass.
The nuclei will move very slowly in comparison with the electrons because they
are so much heavier. If friction is included, the nuclei should end up with zero
velocity at their equilibrium spacing, which is atX = 1.3881a0 (within the HF
approximation and using exclusively s-basis functions). This is to be compared
with the experimental value of 1.401 a0. The behaviour ofX as a function of
time is shown in Figure 9.3.
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Figure 9.3: The change of the separationX between the nuclei of a hydrogen molecule as
a function of time. The number of nuclear integration steps is shown along theX-axis. The
nuclear integration step size is 4.3 (in atomic units). The integration step for the electrons
was 0.1. 12000 electron integration steps were carried out. The electrons experience a
friction with damping constantγ = 1, and the nuclei are damped with a friction constant of
5.

Check 2 If friction is not included, the nuclei will oscillate around their
equilibrium separation. Use 1836.15 for the proton mass. The frequency
for an initial separation of 1.35 Bohr radii is found to be 13.5× 1013Hz, to
be compared with the value 13.64× 1013Hz obtained above from fitting a
parabola to the bottom of the effective potential well in Figure 9.1, and with the
experimental value, which is 12.48×1013Hz. The parabola was characterised
by a ‘spring constant’κ = 0.385. The behaviour ofX as a function of time is
shown in Figure 9.4.

Check that the results in Figure 9.4 comply with this value (note that the time step
in this figure is 4.3 in reduced units).

It is possible and advisable to use fewer integration steps for the nuclear equation
of motion than for the electronic one: the nuclei move much more slowly than
the electrons, and a nuclear displacement is computationally expensive because
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Figure 9.4: The change of the separationX between the nuclei of a hydrogen molecule as
a function of time. The number of nuclear integration steps is shown along theX-axis. The
nuclear integration step size is 4.3 (in atomic units). The integration step for the electrons
was 0.1. 12000 electron integration steps were carried out. The electrons experience a
friction with damping constantγ = 1 during the first 4000 steps; the nuclei experience no
friction.

the overlap, Hamilton and Fock matrices have to be calculated again. As the
nuclei are moving much more slowly than the electrons this does not affect the
overall accuracy significantly, provided the number of electronic integration steps
carried out between two nuclear displacements is smaller than O(

√

Mn/µ) (see
also above).

*9.4 Orthonormalisation; conjugate gradient and RM-DIIS
techniques

In the previous sections, we have discussed the ‘bare-bones’ Car-Parrinello
method and applied it to a simple system. There is much more toit – quantum
molecular dynamics is still a very active fields within computational condensed
matter research – and the interested reader is referred to the review papers by Payne
et al.,8 and Marx and Hutter9 for details. In this section we describe some elements
of the Car-Parrinello method in more detail, and briefly describe a variant of it,
using conjugate gradients (see Section A.4) for minimisingthe electronic energy.
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9.4.1 Orthogonalisation of the electronic orbitals

The orthogonalisation of the electronic orbitals is maintained through the Lagrange
multipliersΛkl , whose values therefore vary with time. The procedure to calculate
these values depends on the particular integration algorithm used, which is usually
the Verlet algorithm. In the previous section you have seen how this is done in
the case of one orbital, where only the normalisation matters – for more orbitals,
understanding the different procedures is quite subtle.

In the following we shall use the notation

ε = ∑
k

〈ψk|H|ψk〉 (9.49)

for the total energy for a set of orthonormal orbitalsψk. H stands for the Fock
matrix in HF, and in DFT it is the Kohn-Sham Hamiltonian. Let us write down the
Verlet equations of motion for the electronic orbitals:

ψk(t +h) = 2ψk(t)−ψk(t −h)− 2h2

µ

(

Hψk−∑
l

Λklψl

)

. (9.50)

The – yet unknown – multipliersΛkl are symmetric,Λkl = Λlk, and represent
thereforeN(N+1)/2 independent values, which are determined by theN(N+1)/2
orthonormality conditions – hence the Lagrange multipliers are uniquely defined.
It might therefore be surprising that several different orthogonalisation algorithms
exist.8, 10 The reason is that a unitary transformation of the set of orbitals leaves the
set orthonormal: the set{ψ ′

k} defined by

ψ ′
k = ∑

l

Uklψl (9.51)

is orthonormal. Moreover, a unitary transformation leavesthe charge density
unchanged – remember the DFT energy depends on the density and not on the
individual orbitals. Also, the Slater determinants forming the basis functions in the
Hartree-Fock theory are invariant under unitary transformations (see problem 4.7).
It should be noted that such a transformation of the setψk is accompanied by a
similarity transform of the Lagrange parameters:

Λ′
kl = ∑

mn
U†

kmΛmnUnl (9.52)

as can be verified directly from the equation of motion (9.21). Different
orthonormalisation algorithms result in sets of orbitals which span the same space
of functions but which are slightly rotated with respect to each other.



300 Quantum molecular dynamics

Such a rotation may have a tremendous effect on the performance of the Verlet
algorithm. To see this, consider a permutation of the orbitals (which is a special
case of a unitary transformation), carried out between two time steps. This
permutation does not affect the density but it may have a disastrous effect on the
integration of the equations of motion: the (fictitious) velocities of the permuted
orbitals increase suddenly to values ofO(h−1), because the permutation disrupts
the smooth evolution of the orbitals! However, if the rotation is always close to the
unit transformation,

U = 1+h2A (9.53)

whereA is a Hermitian transformation of order one, varying smoothly with time,
the Verlet algorithm will still work: apart from the motion governed by the equation
of motion, the algorithm might induce some extra forces which cause the orbitals to
rotate smoothly in Hilbert space, and this latter motion canbe dealt with perfectly
by the Verlet algorithm. It is difficult to see whether orthogonalisation algorithms
satisfy these requirements and it is therefore easiest to construct the algorithm such
that it is equivalent to the unambiguous time evolution resulting from the Verlet
algorithm (without extra rotation) to a precision of at least orderh4, which is the
overall precision of the Verlet algorithm.

A method which is based on the Verlet algorithm and which solves theΛkl in
(9.50) by the orthogonality requirements is the iterative algorithm called SHAKE
by Ryckaertet al.,5 which was mentioned in Section 8.6.3. This algorithm was
used in the original work of Car and Parrinello.11 It is straightforward and does not
introduce rotations of the set of orbitals. Moreover, it orthogonalises the states to
arbitrary precision (depending on the number of iterationsperformed). For details
we refer to the cited literature.

Most other methods first predict the form of the (orthonormal) ψk at the next
time step with some precision and then perform an additionalorthonormalisation
of these predicted orbitals by constructing orthonormal linear combinations of
them. The idea behind this is that if the prediction is accurate, only few
orthonormalisation iterations are needed. As the Verlet algorithm prescribes an
orthonormalisation by mixing in theψk(t) through the Lagrange multipliers [see
Eq. (9.50)], and not theψk(t + h), such a final re-orthonormalisation can only be
justified if the changes involved are of orderh4 which is the overall accuracy of
the Verlet algorithm for a single step. Therefore these algorithms must first predict
the new values to orderO(h4) and the re-orthonormalisation should yield the new
states lying close to the old states. Note that after each step orthonormality is then
satisfied to machine precision whereas the error in the integration algorithm is order
h4.

Let us now consider one such algorithm in detail. Over a time steph, the orbitals


