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Classical equilibrium statistical mechanics

7.1 Basic theory

In this chapter we briefly review the theory of classical statistical mechanics with
emphasis on those issues which are relevant to computer simulations. We shall
assume that the reader has some background in thermodynamics and statistical
mechanics; for further reading, numerous textbooks are available.1–8

Statistical mechanics concerns the study of systems with many (in principle
infinitely many) degrees of freedom. The degrees of freedom are usually the
positions and momenta of particles, or magnetic moments (‘spins’). We restrict
ourselves to classical systems for which all degrees of freedom commute. The
space spanned by the degrees of freedom is calledphase space– every point in
phase space represents a particular configuration of the system. In the course
of time, the system follows a path in phase space, determinedby the equations
of motion. We are obviously not interested in the values of all these degrees of
freedom as a function of time: only the time averages of physical quantities such as
pressure are measurable. This is because our measuring devices (thermometers,
barometers) respond relatively slowly; hence they give a time average of the
physical quantity of interest. However, even if we could perform an instantaneous
measurement of some quantity we would find a result very closeto the time average
of that quantity as a result of the law of large numbers, whichteaches us that if a
quantity is composed ofN uncorrelated contributions, fluctuations in that quantity
are of order1/

p
N . This implies that for typical macroscopic physical quantities

(such as the temperature of your cup of tea) for whichN ∼ 1024, the fluctuations
are as small as∼ 10−12 if we neglect correlations. If correlations extend over∼ 100

particles, the number of uncorrelated contributions is∼ 1024/100 = 1022, so the
fluctuations remain extremely small.

Computer simulations always sample relatively few degreesof freedom, since
only a restricted amount of data can be stored in memory: system sizes
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in simulations are always much smaller than those of experimental systems.†

Furthermore, a time average of a physical quantityA is given by

Ā = lim
T→∞

1

T

∫T

0
A(t )d t , (7.1)

and we want to obtain results in a finite amount of time! In a molecular dynamics
simulation (see Chapter 8), the typical simulation time is of the order of10−9–
10−6 seconds, far below the time in which most measuring devices sample physical
quantities. The results of such simulations can only be representative if the spatial
correlations extend over ranges smaller than the system size and if the correlation
time of the system is smaller than the simulation time. Sometimes it is possible to
extract useful information from simulations of systems with a size much smaller
than the correlation length by extrapolation – this is done in the finite size scaling
method which will be discussed in Section 7.3.2. In this chapter, we shall almost
exclusively be concerned with systems in equilibrium.

7.1.1 Ensembles

If a system is thermally and mechanically insulated, the internal energy will remain
unchanged in the course of time. If the system is not insulated, it will eventually
take on the temperature of its surroundings (we assume that the surroundings have
a constant temperature). Such physical quantities, which are either kept fixed
or whose average value is controlled externally are calledsystem parameters.
Different experimental circumstances correspond to different parameters being
kept fixed. In the theory of statistical physics, these casescorrespond to
different ensembles. We shall see that adapting the simulation techniques for
classical many-particle systems (Monte Carlo and molecular dynamics) to these
experimental situations is a nontrivial problem – that is why we consider the
ensemble theory in some detail in this section.

The fundamental postulate, or assumption, of statistical mechanics pertains to
systems with fixed energyE , volume V and particle numberN (in magnetic
systems, instead of the volumeV , the external magnetic fieldH is kept constant).
The fundamental postulate says that all states accessible to the system and having
a prescribed energy, volume and number of particles are equally likely to be visited
in the course of time (the ergodic hypothesis). This leads toan identification of
the time averagēA (7.1) of the physical quantityA with a uniform average over all

†A noticeable exception is formed by the so-called mesoscopic systems which contain typically
102 to 105 particles.



182 Classical equilibrium statistical mechanics

accessible states – the latter is denoted as〈A〉. Denoting the states byX , we have

〈A〉 =
∑

{X |E} A(X )
∑

{X |E}

=
∑

X A(X )δ[H (X )−E ]
∑

X δ[H (X )−E ]
= Ā. (7.2)

H (X ) is the Hamiltonian which gives the energy for a pointX in phase space.
The denominator ensures proper normalisation. The sum

∑

{X |E} denotes a sum
over all statesX with a fixed energyE ; in the unrestricted sums the delta-function
takes care of the restriction to the states with energyE (the restriction to a specific
volume and particle number is tacitly assumed). In the case of continuous degrees
of freedom, the sums will generally be replaced by integrals. In the case of a
monatomic liquid consisting ofN moving particles with spherically symmetric
interactions for example, the sum is replaced by the following integral over the
positionsri and momentapi of the particles:

∑

X

→
(

1

h

)3N ∫

V
d 3r1d 3r2 . . .d 3rN

∫

d 3p1d 3p2 . . .d 3pN (7.3)

whereh is Planck’s constant. The average (7.2) is called theensemble averageand
the set of states under consideration (fixedN , V andE ) is called themicrocanonical
ensembleor (NV E ) ensemble [(N HE ) ensemble in the magnetic case]. From now
on, the volumeV of a system of moving particles can be replaced by the external
magnetic fieldH for magnetic systems unless stated otherwise.

The denominator in (7.2) counts the number of states with theprescribed energy.
In fact, quantum mechanics imposes a way of counting which for the case of
identical particles is quite different from the classical procedure: as the particles
are indistinguishable, configurations which can be obtained from each other by
permuting the particles should be counted only once – this implies that the sum
in the denominator of (7.2) should be divided byN !.† The number of states with
energyE is then given by

Ω(N ,V ,E ) =
1

N !

∑

X

δ[H (X )−E ] (7.4)

(for mixtures, the factorN ! is replaced by the productN1!N2! . . ., where the
subscripts label the different species). Theentropyis defined in terms ofΩ(N ,V ,E )

as
S(N ,V ,E )= kB lnΩ(N ,V ,E ) (7.5)

wherekB is Boltzmann’s constant. The quantum counting factorN ! is necessary in
order to make the entropy thus defined an extensive variable,i.e. a variable which

†This only holds for systems in which there is at most one particle per quantum state. Properly
taking into account more particles per state leads to quantum statistical distributions.
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scales linearly with system size. The thermodynamic quantities temperatureT ,
chemical potentialµ, and the pressureP are given as derivatives of the entropy
with respect to the system parameters:

T =
(

∂S

∂E

)−1

N ,V

µ=−T

(

∂S

∂N

)

E ,V

P =T

(

∂S

∂V

)

E ,N

(7.6)

as can be readily seen from the first law of thermodynamics:†

dE = T dS −PdV +µd N . (7.7)

In experimental situations, it is often the temperature which is kept constant and
not the energy (for the latter to be constant, the system mustbe insulated thermally
and mechanically). In order to achieve constant temperature, the system under
consideration is coupled to a heat bath, a much larger systemwith which it can
exchange heat. It turns out that a time average in the system under consideration
is equal to a weighted average over states with fixed volume and particle number
(the energy is no longer restricted); the weighting factor is the so-calledBoltzmann
factor exp[−H (X )/(kBT )]. Writing β= 1/(kBT ), we have

〈A〉NV T =
1

N !Z

∑

X

A(X )e−βH (X ); (7.8a)

Z (N ,V ,T )=
1

N !

∑

X

e−βH (X ). (7.8b)

The factorZ ensures proper normalisation – it is called thepartition functionand
it is related to the free energyF :

F =−kBT ln Z (N ,V ,T ) (7.9)

which, in terms of thermodynamic quantities, is given by

F = E −T S. (7.10)

In equilibrium, the free energy assumes its minimum under the constraint of fixed
volume and particle number. The average in (7.8) is called the canonical ensemble
averageor (NV T ) ensemble average. Note that the partition function can be written
as a sum over sets of states with fixed energy:

Z (N ,V ,T )=
∑

E

e−βE
Ω(N ,V ,E ), (7.11)

†Often, the first law is stated without including changes in particle numberdN .
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whereΩ(N ,V ,E ) is the number of states with energyE as defined already in the
microcanonical ensemble. The number of statesΩ(N ,V ,E ) is a rapidly increasing
function of E and the Boltzmann distribution is a rapidly decreasing function of
E . The product of the two functions peaks sharply at some valueĒ and the system
will be found having an energy very close to this value most ofthe time. This
suggests that there is in practice not much difference between the canonical and
the microcanonical system in which the energy is kept rigorously fixed atĒ . This
is a manifestation of the so-called ensemble equivalence: because of the law of
large numbers, measurable physical quantities exhibit very small fluctuations –
hence fixing them to their average value leaves the system essentially unchanged.
For finite systems, the differences between the ensembles increase with decreasing
system size.

Using the definition of the entropy (7.5), we may write (7.11)as

Z (N ,V ,T )=
∑

E

e−β(E−T S) =
∑

E

e−βFE , (7.12)

whereFE is the free energyE−T S with S evaluated in the microcanonical ensemble
with energyE , and we see that the sum is indeed dominated by the states for which
the free energy is minimal.

Using again the first law of thermodynamics, (7.7), we can derive the following
thermodynamic quantities from the free energy:

µ=
(

∂F

∂N

)

V ,T

P =−
(

∂F

∂V

)

N ,T

S =−
(

∂F

∂T

)

V ,N

. (7.13)

If the pressureP is kept constant and not the volume, as in a cylinder closed
by a movable piston, we obtain an average over the isothermal-isobaric or(N PT )

ensemble:
〈A〉NPT =

1

N !Q

∫

dV e−βPV
∑

X

e−βH (X )A(X ); (7.14a)

Q(N ,P,T )=
∫

dV e−βPV 1

N !

∑

X

e−βH (X ) =
∫

dV e−βPV Z (N ,V ,T ), (7.14b)

whereQ(N ,P,T ) is again called the partition function. We see thatQ is related
to the canonical partition functionZ in a similar fashion asZ was related to the
function Ω in the microcanonical ensemble – see Eq. (7.11).Q is related to the
Gibbs free energy or Gibbs potentialG:

G =−kBT lnQ(N ,P,T ). (7.15)

G can be expressed in terms of thermodynamic quantities as

G = E −T S +PV , (7.16)
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and it assumes its mimimum value when the system has reached equilibrium under
the condition of fixed temperature and pressure. For magnetic systems, the role of
the pressureP is taken over by the total magnetic momentM . The other relevant
thermodynamic quantities follow from the definition ofG(N ,P,T ):

µ=
(

∂G

∂N

)

P,T

V =
(

∂G

∂P

)

N ,T

S =−
(

∂G

∂T

)

P,N

. (7.17)

If the volume is again fixed, but the number of particles is allowed to vary, we
obtain thegrand canonical ensembleaverage:

〈A〉 =
1

ZG

∑

N

eβµN 1

N !

∑

X

e−βH (X )A(X ) (7.18a)

ZG(µ,V ,T ) =
∑

N

eβµN 1

N !

∑

X

e−βH (X ). (7.18b)

Here, µ is the chemical potential for the addition or removal of a particle.
ZG(µ,V ,T ) should not be confused with the canonical partition function
Z (N ,V ,T ) – it can be expressed in terms of the latter as

ZG(µ,V ,T ) =
∑

N

eβµN Z (N ,V ,T ). (7.19)

ZG defines thegrand canonical potentialΩG analogous to similar definitions for
the other ensembles:

ΩG(µ,V ,T ) =−kBT ln ZG(µ,V ,T ). (7.20)

In equilibrium, this potential assumes its minimum value for µ, T and V fixed.
From the definition ofZG and from the expression for the average values in the
grand canonical ensemble, it follows that

ΩG(µ,V ,T ) = F −µN . (7.21)

The internal energy can be written in terms of the variablesS, V and N and it
satisfies the Gibbs-Duhem equation4

E (S,V , N )= T S −PV +µN (7.22)

so that we have
ΩG(µ,V ,T ) =−PV. (7.23)

From the grand canonical potential we can derive thermodynamic quantities:

N =−
(

∂ΩG

∂µ

)

V ,T

P =−
(

∂ΩG

∂V

)

µ,T

S =−
(

∂ΩG

∂T

)

V ,µ

. (7.24)
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Expectation values of thermodynamic quantities are eithercalculated as
ensemble averages or as integrals over phase space. As an example of an ensemble
average, consider the internal energy. The expectation value of this quantity in the
canonical ensemble is given by

〈E〉NV T =
∑

X e−βH (X )
H (X )

∑

X e−βH (X )
(7.25)

and from this it is readily seen that

〈E〉NV T =−
∂ ln Z

∂β
. (7.26)

The specifc heat at constant volumeCV is defined as

CV =
(

∂E

∂T

)

N ,V

(7.27)

and it can therefore be related to the root mean square (rms) fluctuation of the
energy:

CV =
1

kBT 2

∂2 ln Z

∂β2

=
1

kBT 2

[

∑

X e−βH (X )
H

2(X )
∑

X e−βH (X )
−

(

∑

X e−βH (X )
H (X )

∑

X e−βH (X )

)2]

=
1

kBT 2

(〈

E 2
〉

NV T −〈E〉2
NV T

)

. (7.28)

Information about the microscopic properties of the systemis given by
correlation functions, which can sometimes be measured experimentally, for
example through neutron scattering experiments.9 In the next section we shall
encounter several examples of correlation functions.

In later chapters, we shall describe the molecular dynamicsand Monte Carlo
simulation methods, which enable us to evaluate ensemble averages of different
physical quantities which are expressed in terms of the system coordinates – such
ensemble averages are calledmechanical averages. Free energies and chemical
potentials are not directly given as mechanical averages but as phase space
integrals. Integrals over phase space cannot be estimated directly in simulations,
but fortunately differences between free energies at two different temperatures can
be formulated as ensemble averages. Suppose, for example, that we know the free
energy of system at a temperatureT , and we would like to know it at a different
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temperatureT ′. The differenceβF (T )−β′F (T ′) is then found as

exp
[

βF (β)−β′F (β′)
]

=
Z (β′)

Z (β)
=

∑

X exp[−β′
H (X )]

∑

X exp[−βH (X )]
=

〈

exp
[

(−β′+β)H
]〉

β (7.29)

where〈· · ·〉β denotes a canonical ensemble average evaluated at inverse temperature
β. Determination of this expectation value in a simulation suffers from bad
statistics. The reason is that in these simulations the system is pushed into a narrow
region around a hypersurface in phase space where the configurational energy is
equal to its average value, sayĒ , at temperatureβ. In Eq. (7.29), we want to probe
the region where the configurational energy is equal to its averageĒ ′ at temperature
β′ – hence this region will only be probed correctly ifβ andβ′ are fairly close, so
that the hypersurface with configurational energyĒ ′ lies within the narrow region
around thēE-hypersurface probed by the phase space integral. If this isnot the case,
simulations can be performed for a number of temperatures betweenT andT ′; the
resulting free energy differences are then added to find the desired free energy
difference. Such is frequently done, although a slightly more subtle approach is
used in practice, see Ref. 10.

Another approach is to integrate the free energy numerically from one value
of the volume or temperature to another and is calledthermodynamic integration.
According to Eqs. (7.13) and (7.26), we have10

F (T,V1) = F (T,V0)−
∫V1

V0

P(T,V ) dV (7.30a)

F (T1,V )

T1
=

F (T0,V )

T0
+

∫T1

T0

E (T,V )

T 2
dT. (7.30b)

This method can be used to calculate energy differences between systems at
different temperatures or with different volumes. Integration over a particular path
in phase space can be performed by carrying out simulations for a number of points
on that path in order to determine〈P〉 or 〈E〉 and then performing a numerical
integration of (7.30). It is advisable to choose these points in accordance with
the Gauss-Legendre integration scheme – see Section A.6. Ata phase transition
(see Section 7.3), the free energy does not behave smoothly as a function of
the system parameters and the path must either circumvent the transition line,
or two integrations must be performed, one for each phase, with starting points
corresponding to appropriate reference systems for which the free energy is known,
for example, at zero or infinite temperature.
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In Chapter 10 we shall consider additional methods for calculating free energies
and chemical potentials. For a review of free energy calculation methods see
Ref. 10.

7.2 Examples of statistical models – phase transitions

7.2.1 Molecular systems

A modelis defined by its degrees of freedom and by the Hamiltonian which assigns
an energy to every possible state of the system, that is, a specific set of values of
the degrees of freedom. If we consider, for example, a systemconsisting ofN
identical point particles, the degrees of freedom are givenby all positionsri and all
momentapi , i = 1, . . . , N of the particles. We shall denote the full sets of positions
and momenta byR andP respectively. The HamiltonianH is given as

H (R ,P)=
N
∑

i=1

p2
i

2m
+VN (R). (7.31)

VN (R) denotes the total potential energy of all the particles withpositions given
by the3N -coordinateR. In simulations one often uses an approximation in which
VN (R) is written as a sum over pair potentials:

VN (R) =
1

2

N
∑

i , j
i 6= j

V2(|ri −r j |), (7.32)

where the sum is over all pairsi , j , except those withi = j . The factor1/2

compensates the double counting of pairs in the sum. Pair potentials are so popular
because usually the evaluation of all forces or all potentials is the most time
consuming part of the program, and the time needed for this calculation increases
rapidly with the number of particles involved in the interaction. For pair potentials
for example, there areN (N − 1)/2 interactions, for three-particle interactions we
would haveO (N 3) contributions etc.

A Lennard–Jones parametrisation for the pair potential is often adopted:

VLJ(r ) = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

. (7.33)

Such a potential has already been used in Chapter 2† for describing the interaction
between a hydrogen and a krypton atom. The1/r 6 tail is based on polarisation

†Note that this form deviates from that given in Chapter 2. Thepresent form is common in
molecular dynamics.
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effects of the interacting atoms and the1/r 12 repulsive is chosen for numerical
convenience. For argon, the Lennard-Jones description hasbeen quite succesful11

– it has been applied to the solid, liquid and gas phases.
The canonical partition functionZ is given as

Z (N ,V ,T )=
1

h3N N !

∫

V
d 3N R d 3N P exp

[

−β
(

N
∑

i=1

p2
i

2m
+VN (R)

)]

. (7.34)

Irrespective of the form ofVN , we can perform the (Gaussian) integration over the
momenta since they do not couple with the spatial coordinates, and we find

Z (N ,V ,T )=
1

N !

(

2mπ

βh2

)3N/2 ∫

V
d 3N R exp

[

−βVN (R)
]

. (7.35)

For systems consisting of rigid polyatomic molecules, the interaction potential is
usually taken to be the sum of atomic pair potentials, aside from rigidity constraints.
A tantalising problem is the satisfactory description of water in simulations using
ab initio interaction potentials.12

Macroscopic quantities such as pressure, specific heat, etcetera, can be
determined relatively easily from simulations and can be compared with
experimental results. They give global information concerning the state of the
system. The pressure can be found in a simulation using the virial theorem:13

βP

n
= 1−

β

3N

〈 N
∑

i=1

ri∇i VN (R)

〉

(7.36)

where〈· · ·〉 denotes the usual ensemble average, but in a dynamic system the time
average can be used instead.

The specific heat at constant volume can easily be calculatedin the canonical
ensemble using Eq. (7.28), which relates this quantity to the fluctuation of the
total energy. However, in the microcanonical ensemble, thetotal energy is fixed,
so its fluctuation vanishes at all times. Fortunately, it canbe calculated from the
fluctuation of the kinetic energy from a formula derived by Lebowitz:14

〈

δK 2
〉

〈K 〉2
=

2

3N

(

1−
3N

2CV

)

. (7.37)

More detailed information can experimentally be obtained via X-ray and neutron
scattering experiments. In particular, several correlation functions can be measured
experimentally and they can also be determined in simulations. The static pair
correlation functiong (r,r′) is proportional to the probability of finding a particle
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at r and simultaneously one atr′. In the canonical ensemble, it is given by the
following expression:

g (r,r′)=V 2 1

N !h3N Z

∫

V
d 3r3 . . .d 3rN exp

[

−βVN (r,r′,r3, . . . ,rN

]

. (7.38)

For a homogeneous system, this function depends on∆r = r− r′ only and it can
hence for largeN be written as

g (∆r) =
V

N (N −1)

〈

∫

d 3r ′
N
∑

i , j
i 6= j

δ(r′−ri )δ(r′+∆r−r j )

〉

. (7.39)

For large∆r, the correlation function tends to 1, and often the ‘bare’ correlation
functionh(∆r), which is defined ash(∆r)= g (∆r)−1 is used instead.

The pair correlation function contains information concerning the local structure
of the fluid. For an isotropic, homogeneous system, the pair correlation function
depends only on the distance∆r = |r− r′|. Suppose we were to sit somewhere in
the fluid and watch the surroundings for some time, then, on average, we would
see a homogeneous structure. If we were to move along with a particular particle,
however, and watch the scenery from this particle, we would find no particles close
to us because of the strong short-range repulsion. Then we have an increase in
density due to a layer of particles surrounding our particle, followed by a drop in
density marking the boundary between this layer and a secondlayer, and so on.
Due to the fluctuations, the layer structure becomes more andmore diffuse for
increasing distances and the correlation function will approach a constant value at
large distances. A typical example of a pair distribution function in a fluid is shown
in Figure 7.1. For a discussion on the experimental determination of static and
dynamic correlation functions, see Ref. 13.

Another important correlation function is the velocity autocorrelation function,
which is a function of time. It is the expectation value of thedot product of the
velocity of a particular particle (‘tagged particle’) at time0 with the velocity of the
same particle at timet :

cvi
(t ) = 〈vi (0) ·vi (t )〉 (7.40)

for an arbitrary particlei . For a homogeneous system this is independent ofi . Since
this correlation function is a dynamic quantity, it cannot be found as an ensemble
average, as the latter is suitable for evaluation of averages of static quantities only.
For identical particles, the velocity autocorrelation function is usually evaluated as
a combined time average and an average over theN particles in equilibrium:

cv(t )=
1

N
lim

T→∞

N
∑

i=1

1

T

∫T

0
d t ′vi (t ′) ·vi (t ′+ t ). (7.41)
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Figure 7.1: The pair correlation function of argon at its triple point.

In 1970, Alder and Wainwright concluded from molecular dynamics simulations
for the hard sphere gas that this function decays algebraically as 1/t D/2 (D is the
dimension of the system), in striking contrast to the ‘molecular chaos’ assumption
according to which the velocity autocorrelation should decay exponentially. The
long time tail implies that a particle moving in a fluid does not so easily ‘forget’
its initial motion. It turns out that the tagged particle causes a pressure rise ahead
and a pressure drop behind itself and the resulting pressuredifference produces
vortices (in two dimensions) or a sideways vortex ring (ifD = 3) and these persist
for a relatively long time. Remarkable quantitative agreement has been found with
a hydrodynamic calculation of a sphere moving in a fluid.15, 16

7.2.2 Lattice models

Another model is a ‘magnetic’ one: the famous Ising model.17, 18 The quotes
are put around the qualification ‘magnetic’ to indicate thatthe model does not
describe magnetic systems satisfactorily, it gives however a good description of
atoms adsorbed on surfaces and of two-component alloys. Furthermore, the Ising
model is an example of a lattice field theory (lattice field theories will be discussed
in Chapter 15). Last but not least: the two-dimensional Ising model on a square
lattice was the first model exhibiting a genuine phase transition and which was
solved exactly.18–20

The Ising model is defined on a lattice and we shall confine ourselves to the
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two-dimensional version on a square lattice of sizeL ×L (in the thermodynamic
limit L goes to infinity). The lattice sites are labelled by a single index i , and
with

〈

i , j
〉

we denote a pair of neighbouring sites, where it is assumed that the
spins on the top row of the lattice are connected to the corresponding ones on the
bottom row and similarly for the left and right columns of sites (periodic boundary
conditions, see Figure 7.2). On each sitei , a ‘spin’ si is located, which can assume

Figure 7.2: Periodic boundary conditions on the square lattice. All sites on the left column
are coupled to their counterparts on the right column, but only two of these couplings are
shown.

two different values, which we shall take+1 and−1. The spins are the degrees of
freedom, and the Hamiltonian assigns an energy to each configuration {si } of the
spins according to

H {si } =−J
∑

〈i , j〉
si s j −H

∑

i

si . (7.42)

J is a coupling constant. It couples only nearest neighbour spins: the first sum
is over nearest neighbour pairs on the lattice (taking periodic boundary conditions
into account). For positiveJ , the coupling term favours like nearest neighbour pairs
as this lowers the total energy: each spin wants to be surrounded by like spins on
neighbouring sites – this case is called ferromagnetic – andfor negativeJ-values
the model is called antiferromagnetic. The second term favours the spins to have
a sign equal to that of the external magnetic fieldH . The partition function of the
Ising model is given by

Z =
∑

{si }

exp

[

βJ
∑

〈i , j〉
si s j +βH

∑

i

si

]

. (7.43)
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Notice that the model is defined without any reference to dynamics. Dynamical
Ising models have been formulated21 and these reflect somehow the behaviour of
real systems, but their form is not imposed by physical laws.

An interesting case is zero external magnetic field (H = 0), for which the model
has been solved analytically. The Hamiltonian is then invariant with respect
to global spin reversal. At absolute zero temperature,β → ∞, either of two
configurations, with all spins+ or all spins−, are allowed. Suppose we start off
with all spins+. We are interested in the behaviour of the average value of the spins,
which we shall callmagnetisationand which is denotedm. Flipping a spin with
four equal nearest neighbours induces a penalty via the Boltzmann factor being
reduced by a factore−8βJ (remember the Boltzmann factor gives the weight, i.e.
the probability of occurrence in a time sequence) and for lowtemperature, asβ is
still large, a particular spin turning over is therefore a very rare event. The relative
occurrence of a configuration with anarbitrary single spin turned over with respect
to one in which all spins are equal is given byL2e−8βJ . If we raise the temperature,
the probability for having one or more spins turned over increases and therefore the
magnetisation decreases (in absolute value). What will happen to the magnetisation
when increasing the temperature further? Let us first consider T →∞, orβ= 0. In
that case all configurations have the same Boltzmann factor of 1 and the coupling
between the spins is no longer noticeable. Therefore, each spin will assume values
+1 and−1 with equal probability and the average magnetisation will vanish. Two
scenarios are possible for intermediate temperatures: either the magnetisation will
decay asymptotically with increasing temperature, or it will vanish at some finite
temperature. If the latter happens, we shall see a nonanalytic behaviour in the
magnetisation curve, which seems highly improbable as the Hamiltonian depends
analytically on all spins. Indeed forfinitesystems, all physical variables are analytic
functions of the system parameters, but forN →∞, nonanalytic behaviour might
show up. This is precisely what happens! The magnetisation for the infinite system
vanishes at a finite temperatureTc given by J/kBTc ≈ 0.44 and this phenomenon
is called phase transition.18, 19 For reasons to be explained below, this phase
transition is often called ‘second order’, ‘critical’ or ‘continuous’. Figure 7.3 shows
the(m,T ) phase diagram for zero magnetic field. Two branches are shown, one for
a system starting off with negative, and the other with positive magnetisation.

The behaviour of the Ising ferromagnet may be described in terms of the balance
between entropy and energy. There is only one state with lowest energy (if we
restrict ourselves to positive magnetisation at low temperatures, see below),L2

states with one spin flipped,L2(L2 −1)/2 states with two spins flipped and so on:
the number of states increases rapidly with energy. It also increases rapidly with
decreasing magnetisation for similar reasons. Therefore,there exist a huge number
of disordered (zero magnetisation) states, having a relatively small Boltzmann
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Figure 7.3: Phase diagram of the Ising model. There are two branches, one with negative
and one with positive magnetisation, corresponding to the spin-reversal symmetry present
in the model.

factor, and a small number of ordered states, with a large Boltzmann factor. The
Boltzmann effect is reduced by increasing the temperature.At the point where the
numeric abundance (entropy effect) of the disordered states compensates for the
Boltzmann effect, energy and entropy of the domain walls separating the spin-up
from the spin-down phases are said to be in balance – this is the critical point, where
the average magnetisation reaches zero.

This entropy–energy balance can be quantified using an argument given by
Peierls.5 A domain wall of lengthN , separating a+ from a− region, represents
an energy penalty of2J N , since each pair of opposite spins on both sides of the
wall carries an energyJ , as opposed to equal neighbouring spins representing an
energy−J . We can estimate the number of possible domain wall configurations
by realising that at each segment a domain wall has the optionof turning left
or right, or continuing straight on, leading to three possibilities at each segment.
However, a domain wall cannot intersect itself, so at some segments only two of
the three options are allowed. Therefore the number of domain wall configurations
lies between2N and3N , and we have for the entropyS:

kBT ln2N < S < kBT ln3N . (7.44)
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The point where energy and entropy are in balance satisfies

kBT N ln2 < 2N J < kBT N ln3, (7.45)

which leads toln2 < 2J/(kBT ) < ln3, or 0.3466 < J/(kBT )< 0.549, to be compared
with the exact valueJ/(kBT ) ≈ 0.44.

A remark is in place. The picture sketched so far is a dynamic one: we start off
with a particular state (all spins+) and consider what happens when the temperature
is increased. According to the postulate of statistical mechanics, average values of
physical quantities are given by ensemble averages, and we see immediately that
the average magnetisation is always zero, as the Hamiltonian is symmetric with
respect to flipping all spins! It is, however, believed that in any realistic system
the spins turn over one after another, or perhaps in small groups at a time. Turning
over the magnetisation requires a large number of spin flips and the occurrence
of a domain wall between two regions of different spin with a length of the order
of the linear system size. The probability for this to happenis exceedingly small
and the system will never enter the opposite magnetisation phase. This implies
ergodicity violation since not all configurations are accessible to the system. A
nice way to get round this violation is to switch on a small butpositive magnetic
field H which causes a difference between the energy of the positiveand negative
magnetisation phase by an amount2HL2, and therefore the negative magnetisation
phase no longer contributes to ensemble averages. After thecalculation has been
completed, the limitH → 0 is taken. It is to be noted that for a finite external
magnetic field the phase transition disappears.†

7.3 Phase transitions

7.3.1 First order and continuous phase transitions

As we have seen already in Section 7.2, phase transitions mayoccur in
thermodynamic systems. These transitions can be of two different types, first order
and second order. The latter are also called critical or continuous transitions. In this
section we consider phase transitions in more detail, with emphasis on phenomena
and techniques which are of interest in numerical simulations. In particular we
discuss the finite size scaling technique for studying second order transitions in
simulations. The description here is short and simplified and for more detailed
accounts the reader is referred to the books by Plischke and Bergersen,5 Reichl,3

†Switching from a positive magnetic field to a negative one induces a change in sign of the
magnetisationm if T < Tc. This is a first order phase transition, induced by the magnetic field
instead of the temperature.
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Pathria,22 Le Bellac8 and the various volumes in the Domb and Green/Lebowitz
series.23

The state of a system is usually characterised by a particular value of a physical
quantity which is called theorder parameter. This order parameter is used to
distinguish between different phases. In the case of a gas–liquid transition at
fixed pressure and temperature, it is the density which playsthe role of the order
parameter and the transition to the gas phase is indeed characterised by the density
being decreased by a large factor. In magnetic systems, withthe magnetic field and
the temperature as system parameters, the order parameter is the magnetisationm
which distinguishes the magnetic (m 6= 0) from the nonmagnetic (m = 0) phase
and which, as we have seen above, is continuous at the zero-field Ising phase
transition (the point where it vanishes) but has a discontinuous derivative. The
order parameter is a derivative of the free energy (the density is expressed in terms
of the volume, which is a derivative with respect to pressure, and magnetisation
is a derivative with respect to magnetic field) and thereforea jump in the order
parameter means a discontinuity in a first derivative of the free energy – hence the
name ‘first order’ for this type of transition. If the order parameter is continuous at
the phase transition, we speak of a continuous, critical or second order transition.
In fact, the discontinuity shows up ‘before the second derivative’, as the free
energy generally behaves as a broken power of one of the external parameters,
f ∼ (K −Kc)α, whereK is the external parameter which assumes the valueKc at the
critical point, andα lies between 1 and 2.

As we have seen in Section 7.1, any system in equilibrium is characterised by
some free energy assuming its minimum for given values of thesystem parameters,
and for this minimum the order parameter assumes a particular value. It is possible
to define a free energy for any fixed value of the order parameter by calculating the
partition function for exclusively those configurations which have the prescribed
value of the order parameter. As an example, we can define the free energy,F (m),
for the Ising model with fixed magnetic field in terms of a partition function,Z (m),
defined as

Z (m)=
∑

{si }

e−βH δ

(

∑

i

si −Ld m

)

(7.46a)

F (m) =−kBT ln Z (m), (7.46b)

whered is the dimension of the system. Note the delta-function in the definition
of Z (m) restricting the sum to configurations with a fixed magnetisation m. It is
instructive to consider how this free energy as a function ofthe order parameter
changes with an external parameter (the temperature for example) across the
transition for the two different types of phase transitions. Typical examples are
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shown in Figure 7.4.
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Figure 7.4: Typical behaviour of the free energy as a function of the order parameter
and temperature. The left hand side corresponds the first order case, with transitions
temperatureTf , and the right hand side to the continuous case, with critical transition
temperatureTc.

The equilibrium situation is characterised by the minimum of the free energy. If
we imagine the leftmost minimum in the first order case to correspond to the liquid
phase and the right hand one to the gas phase, we see that, awayfrom the transition
temperature, one of the two phases is stable and the other onemetasTable. The
phase transition is characterised by the liquid phase goingfrom stable to metastable
and the gas phase vice versa. In the continuous case (right hand side of Figure 7.4),
there are two (or more) minima of equal depth, correspondingto as many ordered
phases, and these merge at the phase transition into one, disordered phase – in
the Ising model, the ordered phases are the positive and negative magnetisation
phases, merging into a single, nonmagnetic, disordered phase. Close to the phase
transition the system can easily hop from one (weakly) ordered phase to another, as
the phases are separated by weak barriers and therefore fluctuations will increase
considerably: the phase transition is announced before it actually happens by an
increase in the fluctuations. This is unlike the first order case, in which the order
parameter jumps from one well into the other without this being announced by an
increase in the fluctuations.
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Before focusing on second order transitions, we discuss some problems related
to detecting first order transitions in a simulation. From Figure 7.4 it is seen
that, in order for the actual transition to take place, the system should overcome a
free-energy barrier, and obviously the higher the barrier the longer the time needed
for this to happen. In the short time over which a typical system can be simulated,
it will not be able to overcome the barrier at or near the first order transition and
we shall observe a strong hysteresis: if, in the case of a liquid/gas transition,
the system is cooled down from the gas phase, it will remain inthat phase well
below the transition temperature before it will actually decide to condense into the
liquid phase. On the other hand, if a fluid is heated, it will remain in the fluid
state above the transition temperature for quite some time before it enters the gas
phase. In order to determine the transition temperature it is necessary to obtain
the free energy for both phases so that the transition can be determined as the
point where they become equal. However, as mentioned already in Section 7.1,
the free energy cannot be extracted straightforwardly frommolecular dynamics or
Monte Carlo simulations, and the special techniques mentioned there and those to
be discussed in Chapter 10 must be applied. In transfer matrix calculations (see
Chapter 11), the free energy is directly obtainable but thismethod is restricted to
lattice spin models. Panagiatopoulos24, 25 has developed a method in which two
phases of a molecular system can coexist by adjusting their chemical potentials by
the exchange of particles – see Section 10.4.3.

*7.3.2 Critical phase transitions and finite size scaling

Critical phase transitions are characterised by the disappearance of order caused
by different ordered phases merging into one disordered phase at the transition. In
contrast to first order transitions, critical phase transitions are ‘announced’ by an
important increase of the fluctuations. The Ising model on a square lattice described
above is an ideal model for visualising what is going on closeto a second order
phase transition.

An interesting object in connection with phase transitionsis the pair correlation
function. As the Ising model in itself is not dynamic, only the static correlation
function is relevant. It is given by

g̃ (m,n) = 〈smsn〉 =
1

Z

∑

{si }

sm sn exp

[

βJ
∑

〈i j〉
si s j +βH

∑

i

si

]

. (7.47)

Instead of the pair correlation function defined in (7.47), the ‘bare’ correlation
function is usually considered:

g (i , j ) = g̃ (i , j )−〈si 〉2 (7.48)
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which decays to zero ifi and j are far apart. The physical meaning of the bare pair
correlation function is similar to that defined above for molecular systems. Suppose
we sit on a sitei , theng (i , j ) gives us the probability of finding the same spin value
on site j in excess of the average spin on the lattice. The correlationfunction
defined here obviously depends on the relative orientation of i and j because the
lattice is anisotropic. However, for large distances this dependence is weak and the
pair correlation function will depend only on the distanceri j betweeni and j . The
decay of the bare correlation function below the transitiontemperature is given by

g (r ) ∼ e−r /ξ, larger. (7.49)

ξ is called thecorrelation length: it sets the scale over which each spin has a
significant probability of finding like spins in excess of theaverage probability. One
can alternatively interpretξ as a measure of the average linear size of the domains
containing minority spins. If we approach the transition temperature, more and
more spins turn over. Below the transition temperature, thesystem consists of a
connected domain (the ‘sea’) of majority spins containing ‘islands’ of minority
spin. When approaching the transition temperature, the islands increase in size
and atTc they must grow into a connected land cluster which extends through
the whole system in order to equal the surface of the sea, which also extends
through the whole system. For higher temperature the systemis like a patchwork
of unconnected domains of finite size. The picture describedhere implies that
at the transition the correlation length will become of the order of the system size.
Indeed, it turns out that at the critical phase transition the correlation length diverges
and the physical picture26 is that of huge droplets of one spin containing smaller
droplets of the other spin containing still smaller droplets of the first spin and so
on. This suggests that the system is self-similar for a largerange of different length
scales: if we zoomed in on part of a large Ising lattice at the phase transition, we
would notice that the resulting picture is essentially indistinguishable from the one
presented by the lattice as a whole: the differences only show up at the smallest
scales, i.e. comparable to the lattice constant which increases when zooming in.
This scale invariance is exploited in renormalisation theory27, 28which has led to a
qualitative and quantitative understanding of critical phase transitions.†

One of the consequences of the scale invariance at the critical phase transition is
that the form of the correlation function should be scale invariant, that is, it should
be essentially invariant under a scale transformation withscaling factorb, and it
follows from renormalisation theory that at the transition, g transforms under a

†More recently, the more extended conformal symmetry has been exploited in a similar fashion as
the mere scale invariance. Conformal field theory has turnedout a very powerful tool to study phase
transitions in two-dimensional systems.29–31
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rescaling as
g (r ) = b2(d−y)g (r b) (7.50)

(d is the system dimension). From this, the form ofg is found as

g (r ) =
Constant

r 2(d−y)
. (7.51)

The exponenty is called thecritical exponent. It turns out that this exponent
is universal: if we change details in the Hamiltonian, like adding next nearest
neighbour interactions to it, the temperature at which the transition takes place
will change, but the critical exponenty will remain exactly the same. Systems
which are related through such ‘irrelevant’ changes in the Hamiltonian are said
to belong to the sameuniversality class. If the changes to the Hamiltonian are
too drastic, however, like changing the number of possible states of a spin (for
example 3 or 4 instead of 2 in the Ising model), or if we add strong next nearest
neighbour interactions with a sign opposite to the nearest neighbour ones, the
critical behaviour will change: we cross over to a differentuniversality class.

It should be noted that the spin pair-correlation function is not the only
correlation function of interest. Other correlation functions can be defined, which
we shall not go into, but it is important that these give rise to new exponents.
Different correlation functions may have the same exponent, or their exponents may
be linearly dependent. The set of independent exponents defines the universality
class. In the case of the Ising model this set contains two exponents, the ‘magnetic’
one,yH , which we have encountered above, and the ‘thermal’ exponent yT (which
is related to a different correlation function).

The critical exponents not only show up in correlation functions, they also
describe the behaviour of thermodynamic quantities close to the transition. For
example, in magnetic systems, the magnetic susceptibilityχm , defined as

χm =
(

∂m

∂H

)

T

, (7.52)

exhibits a singularity near the phase transition:

χm(T ) ∼ |T −Tc|−γ (7.53)

whereγ is also called the ‘critical exponent’; its value is relatedto they-exponents
by γ = (−d +2yH )/yT . For the specific heatcH , the correlation lengthξ and the
magnetisationm we have similar critical exponents:

ch(T ) ∝|T −Tc|−α

ξ(T ) ∝|T −Tc|−ν

m(T ) ∝ (−T +Tc)β; T < Tc (7.54a)
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and, moreover, we have an exponent for the behaviour of the magnetisation with
varying small magnetic field at the transition temperature:

m(H ,Tc) = H 1/δ. (7.55)

For the case of the two-dimensional Ising model on a square lattice, we know the
values of the exponents from the exact solution:

α= 0, β= 1/8, γ= 7/4,

δ= 15, ν= 1. (7.56)

The value 0 of the exponentα denotes a logarithmic divergence:

cH ∝ ln |T −Tc|. (7.57)

The fact that there are only twoy-exponents and the fact that the five exponents
expressing the divergence of the thermodynamic quantitiesare expressed in terms
of these indicates that there must exist relations between the exponentsα, β etc.
These relations are calledscaling laws– examples are:

α+2β+γ= 2 and (7.58a)

2−α= dν, (7.58b)

with d the dimension of the system. The Ising exponents listed above satisfy these
scaling laws indeed.

In dynamical versions of the Ising model, the relaxation time also diverges with
a critical exponent. The correlation time is the time scale over which a physical
quantityA relaxes towards its equilibrium valueA – it is defined by†

τ=

∫∞
0 t

[

A(t )− A
]

d t

∫∞
0

[

A(t )− A
]

d t
. (7.59)

At the critical point the correlation time diverges according to

τ= ξz . (7.60)

This divergence implies that close to the critical point thesimulation time needed
to obtain reliable estimates for physical quantities increases dramatically. This
phenomenon is calledcritical slowing down. For most models with a Hamiltonian

†In Section 7.4 we shall give another definition of the correlation time which describes the decay
of the time correlation function rather than that of the quantity A itself.
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Figure 7.5: Typical behaviour of a physical quantityA vs. temperature close to the critical
point for various system sizes.

containing only short-range couplings, the value of the exponentz is close to 2.
For the Ising model in two dimensions, the dynamic critical exponent has been
determined numerically – its value isz ≈ 2.125.32

For systems far from the critical point, the correlation length is small, and it
is easy to simulate systems which are considerably larger than the correlation
length. The values of physical quantities measured will then converge rapidly to
those of the infinite system. Close to the critical point, however, the correlation
length of the infinite system might exceed the size of the simulated system – hence
the system size will set the scale over which correlations can extend. This part
of the phase diagram is called thefinite size scaling region. It turns out that
it is possible to extract information concerning the critical exponents from the
behaviour of physical quantities with varying system size close to the critical point.
Of course, for a finite system, the partition function and hence the thermodynamic
quantities are smooth functions of the system parameters – hence the divergences
of the critical point are absent. However, we can still see a signature of these
divergences in the occurence of peaks, which in the scaling region (ξ≫ L) become
higher and narrower with increasing system size. Also, the location of the peak may
be shifted with respect to the location of the critical point. The general behaviour
is shown in Figure 7.5. These characteristics of the peak shape as a function of
temperature are described in terms of additional exponents, the so-calledfinite size
scaling exponents:

• The shift in the position of the maximum with respect to the critical temperature
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is described by
Tc(L)−Tc(∞) ∝ L−λ. (7.61)

• The width of the peak scales as

∆T (L) ∝ L−Θ. (7.62)

• The peak height grows with the system size as

Amax(L) ∝ Lσm . (7.63)

The behaviour of a system is determined by two length scales:L/a andξ/a, with
ξ the correlation length of the infinite system, which in the finite size scaling region
is larger than the linear system sizeL. As in the critical region, the fluctuations
determining the behaviour of the system extend over large length scales; physical
properties should be independent ofa. This leavesL/ξ as the only possible
parameter in the system and this leads to the so-called finitesize scalingAnsatz.
Defining

ǫ≡
T −Tc

Tc
, (7.64)

we can formulate the finite size scalingAnsatzas follows:

AL(ǫ)

A∞(ǫ)
= f

[

L

ξ∞(ǫ)

]

. (7.65)

Suppose the exponent of the critical divergence of the quantity A is σ:

A∞ ∝ ǫ
−σ . (7.66)

Using, moreover, the scaling form of the correlation lengthξ∝ǫ
−ν, we can write

the scalingAnsatzas
AL(ǫ) =ǫ−σ f (L ǫ

ν) (7.67)

which can be reformulated as

AL(ǫ) = Lσ/νφ(L1/ν
ǫ) (7.68)

where we have replaced the scaling function,f , by another one,φ, by extracting a
factor(L ǫ

ν)σ/ν from f and then writing the remaining function in terms of(L ǫ
ν)1/ν

rather than(L ǫ
ν). Obviously,φ(x) will have a maximumφmax for some value

x = xmax with a peak width∆x. From Eq. (7.68) we then see immediately that:

• The peak height scales asLσ/ν, henceσm =σ/ν.
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• The peak position scales asL−1/ν, henceλ= 1/ν.

• The peak width also scales asL−1/ν, henceΘ= 1/ν.

These are the finite size scaling laws for any thermodynamic quantity which
diverges at the critical point as a power law. We see that if wemonitor the
peak height, position and width as a function of system size,we can extract the
correlation length exponentν and the exponentσ associated withA from the
resulting data.

In reality this approach poses difficulties as the fluctuations increase near the
critical point and hence the time needed for obtaining reliable values for the
physical quantities measured increases too. This increaseis stronger when the
system size increases – hence calculations for larger systems require more time, not
only because more computational effort is used per time stepfor a larger system,
but also because we need to generate more and more configurations in order to
obtain reliable results. An extra complication is that the fluctuations are not only
huge, but they correlate over increasing time scales, and the simulation time must
be at least a few times the relaxation time in order to obtain reliable estimates for the
physical quantities. In Chapter 15 we shall discuss variousmethods for reducing
the dynamic exponentz in Monte Carlo type simulations.

We have presented only the most elementary results of the finite size scaling
analysis and the interested reader is invited to consult more specialised literature.
There exists a nice collection of key papers on the field33 and a recent volume on
finite size scaling.34

7.4 Determination of averages in simulations

In chapters 8 and 10 we shall encounter two simulation methods for classical
many-particle systems: the molecular dynamics (MD) methodand the Monte Carlo
(MC) method. During a simulation of a many-particle system using either of
these methods, we can monitor various physical quantities and determine their
expectation values as averages over the configurations generated in the simulation.
We denote such averages as ‘time averages’ although the wordtime does not
necessarily denote physical time. For a physical quantityA, the time average is

A =
1

M

M
∑

n=1

An . (7.69)

If the system size and the simulation time are large enough, these averages will
be very close to the averages in a macroscopic experimental system. Usually,
the system sizes and simulation times which can be achieved are limited and it
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is important to find an estimate of the error bounds associated with the measured
average. These are related to the standard deviationσ of the physical quantityA:

σ2 =
〈

A2
〉

−〈A〉2 . (7.70)

The ensemble average〈· · ·〉 is an average over many independent simulations.
We can estimate the standard deviation as a time average:

σ2 = A2 − A
2
. (7.71)

For a long enough simulation this reduces to the ensemble average, and the
expectation value of this estimate becomes independent of the simulation time.
Equation (7.71) estimates the standard deviation irrespective of time correlations
between subsequent samples generated by the simulation. However, thestandard
deviation of the mean valueof A calculated overM samples generated by the
simulation, i.e. the statistical error, depends on the number of independentsamples
generated in the simulation, and this is the total number of samples divided by the
correlation ‘time’τ, measured in simulation steps.

In order to study the standard deviation of the mean (the statistical error), we first
analyse the time correlations. These manifest themselves in the time correlation
function:

cA A(k)= 〈(An −〈An〉)(An+k −〈An+k〉)〉 = 〈An An+k〉−〈An〉2 . (7.72)

Note that the right hand side of this expression does not depend on n because
of time translation symmetry. Fork = 0 this function is equal toσ2, and time
correlations manifest themselves in this function assuming nonzero values fork 6=
0. The time correlation function can be used to determine theintegrated correlation
timeτ, defined as

τ=
1

2

∞
∑

n=−∞

cA A(n)

cA A(0)
(7.73)

where the factor1/2 in front of the sum is chosen such as to guarantee that for
a correlation function of the formexp(−|t |/τ) with τ ≫ 1, the correlation time
is equal toτ. Note that this definition of the time correlation is different from
that given in Eq. (7.59). The current one is more useful as it can be determined
throughout the simulation, and not only at the beginning when the quantityA

decays to its equilibrium value. A third definition is theexponential correlation
timeτexp:

τexp=−t /ln

∣

∣

∣

∣

cA A(t )

cA A(0)

∣

∣

∣

∣

, larget . (7.74)
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This quantity is the slowest decay time with which the systemrelaxes towards
equilibrium (such as happens at the start of a simulation when the system is not
yet in equilibrium), and it is in general not equal to the integrated correlation time.

Now let us return to the standard deviation of the mean value of A as determined
in a simulation generatingM configurations (with time correlations). It is easy to
see that the standard deviation in the mean,ǫ, is given by

ǫ
2=

〈

1

M 2

M
∑

n,m=1

An Am

〉

−
(〈

1

M

M
∑

n=1

An

〉)2

=
1

M 2

M
∑

n,m=1

cA A(n −m). (7.75)

If we definel = n −m, then this can be rewritten as

ǫ
2=

1

M 2

M
∑

n=1

n−M
∑

l=n−1

cA A(l ). (7.76)

The lowest and highest values taken on byl are−(M −1) andM −1 respectively,
and some fixed value ofl between these two boundaries occursM −|l | times. This
leads to the expression

ǫ
2=

1

M

M−1
∑

l=−(M−1)

(

1−
|l |
M

)

cA A(l )
largeM−−−−−→ 2

τ

M
cA A(0) = 2

τ

M
σ2. (7.77)

We see that time correlations cause the errorǫ to be multiplied by a factor of
p

2τ

w.r.t. the uncorrelated case. The obvious procedure for determining the statistical
error is to first estimate the standard deviation and the correlation time, using (7.71)
and (7.73) respectively, and then calculate the error using(7.77).

In practice, however, a simpler method is preferred. The values of the physical
quantities are recorded in a file. Then the data sequence is chopped into a number
of blocks of equal size which is larger than the correlation time. We calculate the
averages ofA within each block. For blocks of sizem, the j -th block average is
then given as

A j =
1

m

m( j+1)
∑

k= j m+1

Ak . (7.78)

The averages of the physical quantities in different blocksare uncorrelated and
the error can be determined as the standard deviation of the uncorrelated block
averages. This method should yield errors which are independent of the block size
provided the latter is larger than the correlation time and sufficiently small to have
enough blocks to calculate the standard deviation reliably. This method is called
data-blocking.
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Exercises

7.1 In this problem we analyse the relation between the differential scattering
cross section for elastic X-ray scattering by a collection of particles and the
structure factor in more detail. Consider an incoming X-raywith wave vector
k0, which is scattered intok1 by particle numberj at r j at timet ′. When the
wave ‘hits’ particlej at timet ′, its phase factor is given by

e i k0r j−iωt ′ .

(a) Give the phase of the scattered wave when it arrives at thedetector located
at r at timet .

(b) We assume that the incoming rays have intensityI0. Show that the average
total intensity of waves with wave vectork1 arriving at the detector is given
by

I (k1,r)= I0

〈

N
∑

l , j=1

e i∆k(rl−r j )

〉

with ∆k = k1 −k0.

(c) Show that this expression is equal toI0N S(∆k), where S is the static
structure factor, defined in terms of the correlation function g as

S(k)= 1+n

∫

d 3r g (r)e i kr.

(n is the particle densityN /V .)

7.2 The magnetic susceptibility of the Ising model on anL ×L square lattice is
defined byχ = ∂m/∂H , wherem is the magnetisation andh the magnetic
field.

(a) Show that the magnetic susceptibility can be written as

χ=
1

L2kBT

∑

i , j

(〈

si s j

〉

−〈si 〉2
)

.

(b) A scaling exponentη associated with the magnetic correlation function
[see Eq. (7.48)] is defined by

g (r ) ∼ r 2−d−η.

Assuming that close to the critical point this form extends to a distance
ξ, whereξ is the correlation length, find the following scaling relation
between,γ, η andν:

γ= ν(2−η).
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