.
Classical equilibrium statistical mechanics

7.1 Basic theory

In this chapter we briefly review the theory of classicalist&ial mechanics with
emphasis on those issues which are relevant to computetasioms. We shall
assume that the reader has some background in thermodynamicstatistical
mechanics; for further reading, numerous textbooks aréeial—8

Statistical mechanics concerns the study of systems withynfia principle
infinitely many) degrees of freedom. The degrees of freedoenugually the
positions and momenta of particles, or magnetic momenggngy. We restrict
ourselves to classical systems for which all degrees ofltrecommute. The
space spanned by the degrees of freedom is calede space every point in
phase space represents a particular configuration of thensysin the course
of time, the system follows a path in phase space, deternfiyetthe equations
of motion. We are obviously not interested in the values bftedse degrees of
freedom as a function of time: only the time averages of glaysjuantities such as
pressure are measurable. This is because our measuringesi¢tiermometers,
barometers) respond relatively slowly; hence they givenzetiaverage of the
physical quantity of interest. However, even if we couldfpen an instantaneous
measurement of some quantity we would find a result very ¢tosee time average
of that quantity as a result of the law of large numbers, whéethes us that if a
quantity is composed a¥ uncorrelated contributions, fluctuations in that quantity
are of orderl/v/N. This implies that for typical macroscopic physical qutes
(such as the temperature of your cup of tea) for whitk 1024, the fluctuations
are as small as 10712 if we neglect correlations. If correlations extend ovelr00
particles, the number of uncorrelated contributions-i80%4/100 = 10?2, so the
fluctuations remain extremely small.

Computer simulations always sample relatively few degafefseedom, since
only a restricted amount of data can be stored in memory: esyssizes
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in simulations are always much smaller than those of experial Systems.
Furthermore, a time average of a physical quamtiig given by

_ 1T

A_Th—r»go? | A(ndt, (7.1
and we want to obtain results in a finite amount of time! In aenolar dynamics
simulation (see Chapter 8), the typical simulation time fishe order of10~9—
1075 seconds, far below the time in which most measuring deviaegpke physical
guantities. The results of such simulations can only beessprtative if the spatial
correlations extend over ranges smaller than the systesrasid if the correlation
time of the system is smaller than the simulation time. Somet it is possible to
extract useful information from simulations of systemshwat size much smaller
than the correlation length by extrapolation — this is donghe finite size scaling
method which will be discussed in Section 7.3.2. In this ¢thapve shall almost
exclusively be concerned with systems in equilibrium.

7.1.1 Ensembles

If a system is thermally and mechanically insulated, therimal energy will remain
unchanged in the course of time. If the system is not insdjatewill eventually
take on the temperature of its surroundings (we assumehtbautrroundings have
a constant temperature). Such physical quantities, whiehe#dher kept fixed
or whose average value is controlled externally are cafigstem parameters
Different experimental circumstances correspond to iiffe parameters being
kept fixed. In the theory of statistical physics, these casmsespond to
different ensembles We shall see that adapting the simulation techniques for
classical many-particle systems (Monte Carlo and moleayaamics) to these
experimental situations is a nontrivial problem — that isywhe consider the
ensemble theory in some detail in this section.

The fundamental postulate, or assumption, of statisticadhranics pertains to
systems with fixed energ¥, volume V and particle numbetv (in magnetic
systems, instead of the volunig the external magnetic fiel# is kept constant).
The fundamental postulate says that all states accessilie system and having
a prescribed energy, volume and number of particles ardlgdjialy to be visited
in the course of time (the ergodic hypothesis). This leadantadentification of
the time averagel (7.1) of the physical quantity with a uniform average over all

A noticeable exception is formed by the so-called mesosceypstems which contain typically
102 to 10° particles.
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accessible states — the latter is denote@4as Denoting the states hy, we have

> ix1p AX) _ Y x AX)6[A(X) - E]
2 (X|E} Y x0[A(X) - E]

A (X) is the Hamiltonian which gives the energy for a paitin phase space.
The denominator ensures proper normalisation. The Byg; denotes a sum
over all statesx with a fixed energyg; in the unrestricted sums the delta-function
takes care of the restriction to the states with endtdthe restriction to a specific
volume and particle number is tacitly assumed). In the casertinuous degrees
of freedom, the sums will generally be replaced by integrdls the case of a
monatomic liquid consisting o moving particles with spherically symmetric
interactions for example, the sum is replaced by the folgwintegral over the
positionsr; and momentg; of the particles:

1 3N
Z_’(ﬁ) fvdf‘rldsrz...derfdf‘pldspz...df‘pN (7.3)
X

(A) = = A. (7.2)

whereh is Planck’s constant. The average (7.2) is calledetimeemble averagend
the set of states under consideration (fiRéd” andE) is called themicrocanonical
ensembler (NVE) ensemble (IVHE) ensemble in the magnetic case]. From now
on, the volumeV/ of a system of moving particles can be replaced by the externa
magnetic fieldH for magnetic systems unless stated otherwise.

The denominator in (7.2) counts the number of states witiptbscribed energy.
In fact, quantum mechanics imposes a way of counting whichtife case of
identical particles is quite different from the classicabgedure: as the particles
are indistinguishable, configurations which can be obthiftem each other by
permuting the particles should be counted only once — thiié® that the sum
in the denominator of (7.2) should be divided §y." The number of states with
energyE is then given by

Q(N,V,E) = LZala”‘f(X)—E] (7.4)

(for mixtures, the factorN! is replaced by the produch;!N,!..., where the
subscripts label the different species). Emropyis defined in terms of2(N, V, E)
as

S(N,V,E) = kgInQ(N, V, E) (7.5)

wherekg is Boltzmann’'s constant. The quantum counting fa@fbis necessary in
order to make the entropy thus defined an extensive variabley variable which

This only holds for systems in which there is at most one giarpper quantum state. Properly
taking into account more particles per state leads to quastatistical distributions.
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scales linearly with system size. The thermodynamic qtiestiemperaturer’,
chemical potentiaj:, and the pressur®@ are given as derivatives of the entropy
with respect to the system parameters:

s\ 7! aS 4S
T=[|-—2 =-T|— P=T|— 7.6
(0E)N,v K (GN)E,V (OV)E,N (7.6)

as can be readily seen from the first law of thermodynarhics:
dE=TdS—-PdV +udN. (7.7)

In experimental situations, it is often the temperaturecwhs kept constant and
not the energy (for the latter to be constant, the system bmustsulated thermally
and mechanically). In order to achieve constant temperatine system under
consideration is coupled to a heat bath, a much larger systiémwhich it can
exchange heat. It turns out that a time average in the systel@r wonsideration
is equal to a weighted average over states with fixed volurdeparticle number
(the energy is no longer restricted); the weighting factdhe so-calledoltzmann
factor exp[—#(X)/ (kg T)]. Writing B =1/(kg T), we have

1
(Dnvr=r-— Y AX)e PR, (7.8a)
. X
Z(N,V,T) = %Ze_ﬁ‘]ﬁ X, (7.8b)
* X

The factorZ ensures proper normalisation — it is called plaetition functionand
it is related to the free energy:

F=-kgTInZ(N,V,T) (7.9)
which, in terms of thermodynamic quantities, is given by
F=E-TS. (7.10)

In equilibrium, the free energy assumes its minimum underctimstraint of fixed
volume and particle number. The average in (7.8) is calleg¢&monical ensemble
averageor (NV T) ensemble average. Note that the partition function can bitewr
as a sum over sets of states with fixed energy:

Z(IN,V,T)=Y_ e PEQ(N,V, E), (7.11)
E

fOften, the first law is stated without including changes irtipee numberdN.
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whereQ(N, V, E) is the number of states with energyas defined already in the
microcanonical ensemble. The number of st&e¥, V, E) is a rapidly increasing
function of E and the Boltzmann distribution is a rapidly decreasing fiemcof
E. The product of the two functions peaks sharply at some vAlaed the system
will be found having an energy very close to this value mostheftime. This
suggests that there is in practice not much difference hatvilee canonical and
the microcanonical system in which the energy is kept rigspfixed atE. This
is a manifestation of the so-called ensemble equivaleneeause of the law of
large humbers, measurable physical quantities exhibi serall fluctuations —
hence fixing them to their average value leaves the systeemtéy unchanged.
For finite systems, the differences between the ensemhiesaise with decreasing
system size.
Using the definition of the entropy (7.5), we may write (7.4%)

Z(N,V,T) =Y e PETS =¥ g=hFe, (7.12)
E E

whereFy is the free energ¥ — T'S with S evaluated in the microcanonical ensemble
with energyE, and we see that the sum is indeed dominated by the statesifch w
the free energy is minimal.

Using again the first law of thermodynamics, (7.7), we caiivdehe following
thermodynamic quantities from the free energy:

OF OF OF
S P=—|> S=—{2| . 7.13
H (aN)V,T (av)N,T (aT)V,N (7.13)

If the pressureP is kept constant and not the volume, as in a cylinder closed
by a movable piston, we obtain an average over the isothéswmiaric or(NPT)
ensemble:

(A npT = Ni'fdv e PPV e P70 p(x); (7.14a)
Q =

1

Q(N,RT) :fdv e‘ﬁPVﬁZe‘Wf(’“ :dee—ﬁPVZ(N, V,T), (7.14b)
c X

whereQ(N, P, T) is again called the partition function. We see thats related

to the canonical partition functio in a similar fashion asZ was related to the

function Q in the microcanonical ensemble — see Eq. (7.1Q)is related to the

Gibbs free energy or Gibbs potentiai

G=-kgTInQ(N,PT). (7.15)
G can be expressed in terms of thermodynamic quantities as

G=E-TS+PV, (7.16)
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and it assumes its mimimum value when the system has reaghéibeum under
the condition of fixed temperature and pressure. For magegsitems, the role of
the pressure is taken over by the total magnetic momeut The other relevant
thermodynamic quantities follow from the definition GfN, P, T):

0G 0G 0G
=— V=— S=—-|— . 7.17
H (0N)RT (OP)N,T (aT)P,N ( )

If the volume is again fixed, but the number of particles isva#id to vary, we
obtain thegrand canonical ensembtererage:

1 1
Ay= — Y ePHN ¥ o= PHX) g x 7.18a
(A) Ze%e N!;e (X) ( )
1
Zo(p,V,T) =Y ePHN — 3" o PH X0, (7.18Db)
N N! X

Here, u is the chemical potential for the addition or removal of atipke.
Zg(u,V,T) should not be confused with the canonical partition functio
Z(N,V,T) —it can be expressed in terms of the latter as

Zo(w,V, 1) =Y PPN Z(N,V, T). (7.19)
N
Zg defines thaggrand canonical potentiaf)g analogous to similar definitions for
the other ensembles:
Qcu,V,T)=-kgTln Zg(u, V, T). (7.20)

In equilibrium, this potential assumes its minimum value fio T and V fixed.
From the definition ofZg and from the expression for the average values in the
grand canonical ensemble, it follows that

Qg(u, V,T) = F—uN. (7.21)

The internal energy can be written in terms of the varialsled and N and it
satisfies the Gibbs-Duhem equatton

E(S,V,N)=TS—PV+uN (7.22)

so that we have
Qc(u,V,T) =—-PV. (7.23)

From the grand canonical potential we can derive thermadynguantities:

0Q 0Q 0Q
N=- (52 P--(52] s=-|52) - @
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Expectation values of thermodynamic quantities are eitbalculated as
ensemble averages or as integrals over phase space. Asaplexd an ensemble
average, consider the internal energy. The expectatiarealthis quantity in the
canonical ensemble is given by

Yx e PN z0(X)

(BEYnvr = S o PR (7.25)
and from this it is readily seen that
0lnZz

E =- . 7.26
(E)nvr 3P (7.26)

The specifc heat at constant volur@g is defined as

O0E

Cy=|=— 7.27
v (aT)N,V (7:27)

and it can therefore be related to the root mean square (rogpdition of the
energy:

Co = 1 #Inz
V'™ kgT2 0p2
B 1 ZX e‘ﬁjf(X)sz(X) ~ ZX e_ﬁjf(x),]ﬁ(x) 2
~ kgT? Y x e B Y x e BHX
1
= @ (<E2>NVT - <E>%VVT)' (7.28)

Information about the microscopic properties of the systmmgiven by
correlation functions, which can sometimes be measurecrimpntally, for
example through neutron scattering experiménti the next section we shall
encounter several examples of correlation functions.

In later chapters, we shall describe the molecular dynasics Monte Carlo
simulation methods, which enable us to evaluate ensemigieages of different
physical quantities which are expressed in terms of theesysordinates — such
ensemble averages are callm@chanical averagesFree energies and chemical
potentials are not directly given as mechanical averagésabuphase space
integrals. Integrals over phase space cannot be estimatadlyin simulations,
but fortunately differences between free energies at tfferdint temperatures can
be formulated as ensemble averages. Suppose, for exahgleye know the free
energy of system at a temperatufe and we would like to know it at a different
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temperaturel”. The difference8F(T) - f'F(T’) is then found as

A

A
Y xexp[-p' A (X)]
Y xexp[—BA(X)]

where(---) s denotes a canonical ensemble average evaluated at ingsrgerature
pB. Determination of this expectation value in a simulatiorifess from bad
statistics. The reason is that in these simulations thesyist pushed into a narrow
region around a hypersurface in phase space where the catifignal energy is
equal to its average value, sayat temperaturg. In Eq. (7.29), we want to probe
the region where the configurational energy is equal to &sameE’ at temperature
B’ — hence this region will only be probed correctlygifand g’ are fairly close, so
that the hypersurface with configurational enefgylies within the narrow region
around theE-hypersurface probed by the phase space integral. If thistithe case,
simulations can be performed for a number of temperatursedea T and T’; the
resulting free energy differences are then added to find dsiratl free energy
difference. Such is frequently done, although a slightlyrensubtle approach is
used in practice, see Ref. 10.

Another approach is to integrate the free energy numeyidetim one value
of the volume or temperature to another and is caflemodynamic integration
According to Egs. (7.13) and (7.26), we h&e

exp [BF(B) - B'F(B)] =

=(exp[(-p'+p)#]); (7.29)

141
F(T,Vl)ZF(T,VO)—f P(T,V)dV (7.303.)
Vo

F(T,V) F(Ty, V) +fT1 E(T,V)

T T T (7.30h)
0

This method can be used to calculate energy differencesebeatvgystems at
different temperatures or with different volumes. Inteigra over a particular path
in phase space can be performed by carrying out simulataresrfumber of points
on that path in order to determin@) or (E) and then performing a numerical
integration of (7.30). It is advisable to choose these gointaccordance with
the Gauss-Legendre integration scheme — see Section A.&. pAase transition
(see Section 7.3), the free energy does not behave smoathdy fanction of
the system parameters and the path must either circumventrahsition line,
or two integrations must be performed, one for each phadh, starting points
corresponding to appropriate reference systems for whielfrée energy is known,
for example, at zero or infinite temperature.
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In Chapter 10 we shall consider additional methods for d¢aling free energies
and chemical potentials. For a review of free energy caliculamethods see
Ref. 10.

7.2 Examples of statistical models — phase transitions

7.2.1 Molecular systems

A modelis defined by its degrees of freedom and by the Hamiltoniachvassigns
an energy to every possible state of the system, that is, afispeet of values of
the degrees of freedom. If we consider, for example, a systmsisting of N
identical point particles, the degrees of freedom are giyeall positionsr; and all
momentap;, i = 1,..., N of the particles. We shall denote the full sets of positions
and momenta by andP respectively. The Hamiltoniag is given as

N p?
F(R,P)=) ——+Vy(R). (7.31)
iz12m
Vn(R) denotes the total potential energy of all the particles wpitsitions given
by the3N-coordinateR. In simulations one often uses an approximation in which
Vn(R) is written as a sum over pair potentials:

N
Vn(R) = % > Vallri —rjl), (7.32)

i
where the sum is over all pairsj, except those withi = j. The factor1/2
compensates the double counting of pairs in the sum. Panpals are so popular
because usually the evaluation of all forces or all poténtia the most time
consuming part of the program, and the time needed for thisilgéion increases
rapidly with the number of particles involved in the intefan. For pair potentials
for example, there ar&/(IV —1)/2 interactions, for three-particle interactions we
would have? (N3) contributions etc.

A Lennard—Jones parametrisation for the pair potentiattencadopted:

(%)12 _ (2)6] _ (7.33)

r

Walr) =4e

Such a potential has already been used in Chaptar2iescribing the interaction
between a hydrogen and a krypton atom. The® tail is based on polarisation

fNote that this form deviates from that given in Chapter 2. Phesent form is common in
molecular dynamics.
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effects of the interacting atoms and tiér'? repulsive is chosen for numerical
convenience. For argon, the Lennard-Jones descriptiobées quite succesft
— it has been applied to the solid, liquid and gas phases.

The canonical partition functio# is given as

1

Z(N,V,T)= NN

f d*NR @Np exp . (7.38)
14

N p?
—ﬁ(Z o+ VN(R)

i=1

Irrespective of the form o, we can perform the (Gaussian) integration over the
momenta since they do not couple with the spatial coordinated we find

1 (2mn
Z(N’V'T):_(,th

3N/2
= ) fvdf‘NR exp [-BVn(R)]. (7.35)

For systems consisting of rigid polyatomic molecules, theriaction potential is
usually taken to be the sum of atomic pair potentials, asita figidity constraints.
A tantalising problem is the satisfactory description otevan simulations using
ab initio interaction potentials?

Macroscopic quantities such as pressure, specific heakteed¢c can be
determined relatively easily from simulations and can bengared with
experimental results. They give global information conagsg the state of the
system. The pressure can be found in a simulation using ttz tieorem*3

N
i =1—%<Zr,~vivN(3)> (7.36)

n i=1

where(---) denotes the usual ensemble average, but in a dynamic systetime
average can be used instead.

The specific heat at constant volume can easily be calcuiatdte canonical
ensemble using Eq. (7.28), which relates this quantity &ofthctuation of the
total energy. However, in the microcanonical ensemble tdted energy is fixed,
so its fluctuation vanishes at all times. Fortunately, it barcalculated from the
fluctuation of the kinetic energy from a formula derived bybbwitz:14

(0K7) _ 2 (1— 3N). (7.37)

K2 3N\ 2Cy

More detailed information can experimentally be obtainedX+ray and neutron
scattering experiments. In particular, several cormfafiinctions can be measured
experimentally and they can also be determined in simulatioThe static pair
correlation functiong(r,r’) is proportional to the probability of finding a particle
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atr and simultaneously one at. In the canonical ensemble, it is given by the
following expression:

1
gr,r)= Vszvdgrg...dsmexp[—,BVN(r,r',rg,...,rN]. (7.38)

For a homogeneous system, this function dependaroar -1’ only and it can
hence for largeV be written as

— v 3.1 y / . / .

g(Ar)—m<fd r ;6& —r;)o(r +Ar—r])>. (7.39)
i#]

For largeAr, the correlation function tends to 1, and often the ‘baret@ation

function h(Ar), which is defined a&(Ar) = g(Ar) — 1 is used instead.

The pair correlation function contains information comieg the local structure
of the fluid. For an isotropic, homogeneous system, the manetation function
depends only on the distance = |r —r'|. Suppose we were to sit somewhere in
the fluid and watch the surroundings for some time, then, @naae, we would
see a homogeneous structure. If we were to move along withtigydar particle,
however, and watch the scenery from this particle, we wouldl fio particles close
to us because of the strong short-range repulsion. Then we draincrease in
density due to a layer of particles surrounding our partifdbowed by a drop in
density marking the boundary between this layer and a selzymd, and so on.
Due to the fluctuations, the layer structure becomes morenam@ diffuse for
increasing distances and the correlation function willrapph a constant value at
large distances. A typical example of a pair distributiondtion in a fluid is shown
in Figure 7.1. For a discussion on the experimental detextioin of static and
dynamic correlation functions, see Ref. 13.

Another important correlation function is the velocity acrrelation function,
which is a function of time. It is the expectation value of ti@ product of the
velocity of a particular particle (‘tagged particle’) atie 0 with the velocity of the
same particle at time:

Co, (1) = (v;(0) - v; (1)) (7.40)

for an arbitrary particlé. For a homogeneous system this is independeht®ince
this correlation function is a dynamic quantity, it cannetfound as an ensemble
average, as the latter is suitable for evaluation of averafistatic quantities only.
For identical particles, the velocity autocorrelationdtion is usually evaluated as
a combined time average and an average ovehbparticles in equilibrium:

N 1 T
im Y — | di'vi(t)-vi(t'+0). (7.41)

o()=—=1
o) NT—co= T Jo
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Figure 7.1: The pair correlation function of argon at itpheipoint.

In 1970, Alder and Wainwright concluded from molecular dymes simulations
for the hard sphere gas that this function decays algeliisaas1/t°/? (D is the
dimension of the system), in striking contrast to the ‘malac chaos’ assumption
according to which the velocity autocorrelation shouldajeexponentially. The
long time tail implies that a particle moving in a fluid doed so easily ‘forget’
its initial motion. It turns out that the tagged particle sas a pressure rise ahead
and a pressure drop behind itself and the resulting prestifiezence produces
vortices (in two dimensions) or a sideways vortex ringl§iE 3) and these persist
for a relatively long time. Remarkable quantitative agreathas been found with
a hydrodynamic calculation of a sphere moving in a fit#id-®

7.2.2 Lattice models

Another model is a ‘magnetic’ one: the famous Ising mddel® The quotes
are put around the qualification ‘magnetic’ to indicate ttteg model does not
describe magnetic systems satisfactorily, it gives howavgood description of
atoms adsorbed on surfaces and of two-component alloyshdfarore, the Ising
model is an example of a lattice field theory (lattice fieldotties will be discussed
in Chapter 15). Last but not least: the two-dimensionalggimodel on a square
lattice was the first model exhibiting a genuine phase ttamsand which was
solved exactly8-20

The Ising model is defined on a lattice and we shall confineetwes to the
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two-dimensional version on a square lattice of sizeL (in the thermodynamic
limit L goes to infinity). The lattice sites are labelled by a singldex i, and
with (i, j) we denote a pair of neighbouring sites, where it is assumedtite
spins on the top row of the lattice are connected to the qooreting ones on the
bottom row and similarly for the left and right columns ofsit(periodic boundary
conditions, see Figure 7.2). On each gita ‘spin’ s; is located, which can assume

Figure 7.2: Periodic boundary conditions on the squarieéatAll sites on the left column
are coupled to their counterparts on the right column, biit o of these couplings are
shown.

two different values, which we shall takel and—1. The spins are the degrees of
freedom, and the Hamiltonian assigns an energy to each coafign {s;} of the
spins according to

Jf{si}:—] Z S,’SJ'—HZS,'. (7.42)

(i) i

J is a coupling constant. It couples only nearest neighboimsspghe first sum
is over nearest neighbour pairs on the lattice (taking gariboundary conditions
into account). For positivé, the coupling term favours like nearest neighbour pairs
as this lowers the total energy: each spin wants to be sutezliby like spins on
neighbouring sites — this case is called ferromagnetic —-fandegative/-values
the model is called antiferromagnetic. The second termuia/the spins to have
a sign equal to that of the external magnetic fiBld The partition function of the
Ising model is given by

Z=) exp|BJ Y, sisj+BH)_si|. (7.43)

{si} (i) i
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Notice that the model is defined without any reference to thos. Dynamical
Ising models have been formulatédand these reflect somehow the behaviour of
real systems, but their form is not imposed by physical laws.

An interesting case is zero external magnetic figld<0), for which the model
has been solved analytically. The Hamiltonian is then iawdrwith respect
to global spin reversal. At absolute zero temperatyfe; oo, either of two
configurations, with all spins or all spins—, are allowed. Suppose we start off
with all spins+. We are interested in the behaviour of the average valuediims,
which we shall callmagnetisatiorand which is denotedr. Flipping a spin with
four equal nearest neighbours induces a penalty via theziBalin factor being
reduced by a factoe=®#/ (remember the Boltzmann factor gives the weight, i.e.
the probability of occurrence in a time sequence) and fortEmperature, ag is
still large, a particular spin turning over is therefore ayware event. The relative
occurrence of a configuration with anbitrary single spin turned over with respect
to one in which all spins are equal is given Ie~8%/. If we raise the temperature,
the probability for having one or more spins turned overeéases and therefore the
magnetisation decreases (in absolute value). What wippdiapo the magnetisation
when increasing the temperature further? Let us first cengid- co, or §=0. In
that case all configurations have the same Boltzmann fa€tbraad the coupling
between the spins is no longer noticeable. Therefore, qanwdll assume values
+1 and -1 with equal probability and the average magnetisation veitligh. Two
scenarios are possible for intermediate temperaturdsereitie magnetisation will
decay asymptotically with increasing temperature, or It vénish at some finite
temperature. If the latter happens, we shall see a nonanakghaviour in the
magnetisation curve, which seems highly improbable as tmailtbnian depends
analytically on all spins. Indeed ffinite systems, all physical variables are analytic
functions of the system parameters, but /o oo, nonanalytic behaviour might
show up. This is precisely what happens! The magnetisatiothé infinite system
vanishes at a finite temperatufg given by j/ kg T; = 0.44 and this phenomenon
is called phase transitiot® 19 For reasons to be explained below, this phase
transition is often called ‘second order’, ‘critical’ ordatinuous’. Figure 7.3 shows
the (m, T) phase diagram for zero magnetic field. Two branches are shamwerfor
a system starting off with negative, and the other with paesitnagnetisation.

The behaviour of the Ising ferromagnet may be describeding®f the balance
between entropy and energy. There is only one state withdoemergy (if we
restrict ourselves to positive magnetisation at low terapees, see below),?
states with one spin flipped?(L? - 1)/2 states with two spins flipped and so on:
the number of states increases rapidly with energy. It alsceases rapidly with
decreasing magnetisation for similar reasons. Therefloege exist a huge number
of disordered (zero magnetisation) states, having a velgtismall Boltzmann
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Figure 7.3: Phase diagram of the Ising model. There are tandhres, one with negative
and one with positive magnetisation, corresponding to le-eversal symmetry present
in the model.

factor, and a small number of ordered states, with a largézB@ann factor. The

Boltzmann effect is reduced by increasing the temperatréhe point where the

numeric abundance (entropy effect) of the disordered stedenpensates for the
Boltzmann effect, energy and entropy of the domain wallassmg the spin-up

from the spin-down phases are said to be in balance — this itical point, where

the average magnetisation reaches zero.

This entropy—energy balance can be quantified using an amgfugiven by
Peierls®> A domain wall of lengthN, separating & from a — region, represents
an energy penalty af/N, since each pair of opposite spins on both sides of the
wall carries an energy, as opposed to equal neighbouring spins representing an
energy—J/. We can estimate the number of possible domain wall configuns
by realising that at each segment a domain wall has the opfidarning left
or right, or continuing straight on, leading to three potiitiés at each segment.
However, a domain wall cannot intersect itself, so at songensats only two of
the three options are allowed. Therefore the number of domall configurations
lies betweerz" and3”, and we have for the entrogsy

kgTIn2" < S< kg TIn3". (7.44)
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The point where energy and entropy are in balance satisfies
ksTNIn2 <2NJ < kg TNIn3, (7.45)

which leads tdn2 < 2J/(kgT) <In3, 0r0.3466 < J/ (kg T) < 0.549, to be compared
with the exact valud/ (kg T) = 0.44.

A remark is in place. The picture sketched so far is a dynamé ave start off
with a particular state (all spirs) and consider what happens when the temperature
is increased. According to the postulate of statistical meds, average values of
physical quantities are given by ensemble averages, aneevarsnediately that
the average magnetisation is always zero, as the Hamittdaigymmetric with
respect to flipping all spins! It is, however, believed thatany realistic system
the spins turn over one after another, or perhaps in smalipgrat a time. Turning
over the magnetisation requires a large number of spin fiijgsthe occurrence
of a domain wall between two regions of different spin wittreadth of the order
of the linear system size. The probability for this to hapeaxceedingly small
and the system will never enter the opposite magnetisati@msen This implies
ergodicity violation since not all configurations are acilgle to the system. A
nice way to get round this violation is to switch on a small pasitive magnetic
field H which causes a difference between the energy of the positidenegative
magnetisation phase by an amogptL?, and therefore the negative magnetisation
phase no longer contributes to ensemble averages. Aftarathelation has been
completed, the limitH — 0 is taken. It is to be noted that for a finite external
magnetic field the phase transition disappéars.

7.3 Phase transitions

7.3.1 First order and continuous phase transitions

As we have seen already in Section 7.2, phase transitions ocayr in
thermodynamic systems. These transitions can be of twerdiit types, first order
and second order. The latter are also called critical oricoauis transitions. In this
section we consider phase transitions in more detail, withfesis on phenomena
and techniques which are of interest in numerical simubatioln particular we
discuss the finite size scaling technique for studying sg¢cmder transitions in
simulations. The description here is short and simplified fom more detailed
accounts the reader is referred to the books by Plischke angeBsery, Reichl2

fSwitching from a positive magnetic field to a negative oneudeb a change in sign of the
magnetisationm if T < T¢. This is a first order phase transition, induced by the magriietid
instead of the temperature.
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Pathria?? Le Bella@ and the various volumes in the Domb and Green/Lebowitz
series?®

The state of a system is usually characterised by a parntiealae of a physical
quantity which is called th@rder parameter This order parameter is used to
distinguish between different phases. In the case of a igagHtransition at
fixed pressure and temperature, it is the density which glagsole of the order
parameter and the transition to the gas phase is indeedctfidsad by the density
being decreased by a large factor. In magnetic systemsthdgtimagnetic field and
the temperature as system parameters, the order param#termagnetisatiom
which distinguishes the magnetie:(# 0) from the nonmagneticng = 0) phase
and which, as we have seen above, is continuous at the zktddieg phase
transition (the point where it vanishes) but has a discootis derivative. The
order parameter is a derivative of the free energy (the tleissexpressed in terms
of the volume, which is a derivative with respect to pressarel magnetisation
is a derivative with respect to magnetic field) and therefojemp in the order
parameter means a discontinuity in a first derivative of tee £nergy — hence the
name ‘first order’ for this type of transition. If the orderrpeneter is continuous at
the phase transition, we speak of a continuous, criticakooisd order transition.
In fact, the discontinuity shows up ‘before the second derre’, as the free
energy generally behaves as a broken power of one of thenaektparameters,
f ~ (K-K)%, whereK is the external parameter which assumes the vEjus the
critical point, andx lies between 1 and 2.

As we have seen in Section 7.1, any system in equilibrium ésatterised by
some free energy assuming its minimum for given values ofylseem parameters,
and for this minimum the order parameter assumes a pairticaliae. It is possible
to define a free energy for any fixed value of the order parambgtealculating the
partition function for exclusively those configurations it have the prescribed
value of the order parameter. As an example, we can definegbehergyF(m),
for the Ising model with fixed magnetic field in terms of a gaoti function, Z(m),
defined as

Z(m) = Z e P75 (Z Sj— 4 m) (7.46a)
{si} i

F(m)=-kgTIlnZ(m), (7.46b)

whered is the dimension of the system. Note the delta-function endbfinition
of Z(m) restricting the sum to configurations with a fixed magnatsat:. It is
instructive to consider how this free energy as a functiotheforder parameter
changes with an external parameter (the temperature fanmea across the
transition for the two different types of phase transitiori/pical examples are
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shown in Figure 7.4.

T<T;

W W
\T;\th T>T,

1st order 2nd order

Figure 7.4: Typical behaviour of the free energy as a fumctd the order parameter
and temperature. The left hand side corresponds the firgtr aake, with transitions
temperaturel;, and the right hand side to the continuous case, with criti@sition
temperaturd.

The equilibrium situation is characterised by the minimurthe free energy. If
we imagine the leftmost minimum in the first order case toegpond to the liquid
phase and the right hand one to the gas phase, we see thaframadiie transition
temperature, one of the two phases is stable and the othemetasTable. The
phase transition is characterised by the liquid phase doang stable to metastable
and the gas phase vice versa. In the continuous case (rigtitside of Figure 7.4),
there are two (or more) minima of equal depth, corresponthregs many ordered
phases, and these merge at the phase transition into onedatisd phase — in
the Ising model, the ordered phases are the positive andiveegaagnetisation
phases, merging into a single, nonmagnetic, disordereseph@lose to the phase
transition the system can easily hop from one (weakly) @dl@hase to another, as
the phases are separated by weak barriers and therefongafloos will increase
considerably: the phase transition is announced beforetually happens by an
increase in the fluctuations. This is unlike the first ordesecan which the order
parameter jumps from one well into the other without this\geannounced by an
increase in the fluctuations.
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Before focusing on second order transitions, we discusegmoblems related
to detecting first order transitions in a simulation. FrongUfe 7.4 it is seen
that, in order for the actual transition to take place, th&teay should overcome a
free-energy barrier, and obviously the higher the barhiedénger the time needed
for this to happen. In the short time over which a typical sgstan be simulated,
it will not be able to overcome the barrier at or near the firgleo transition and
we shall observe a strong hysteresis: if, in the case of adlig@s transition,
the system is cooled down from the gas phase, it will remaithétt phase well
below the transition temperature before it will actuallyidie to condense into the
liquid phase. On the other hand, if a fluid is heated, it wilheén in the fluid
state above the transition temperature for quite some tiefigrén it enters the gas
phase. In order to determine the transition temperature friecessary to obtain
the free energy for both phases so that the transition carete¥ndined as the
point where they become equal. However, as mentioned glriea8ection 7.1,
the free energy cannot be extracted straightforwardly freotecular dynamics or
Monte Carlo simulations, and the special techniques meetidhere and those to
be discussed in Chapter 10 must be applied. In transferxratculations (see
Chapter 11), the free energy is directly obtainable butmmithod is restricted to
lattice spin models. Panagiatopofbs® has developed a method in which two
phases of a molecular system can coexist by adjusting theinical potentials by
the exchange of particles — see Section 10.4.3.

*7.3.2 Critical phase transitions and finite size scaling

Critical phase transitions are characterised by the desjamce of order caused
by different ordered phases merging into one disorderedepagthe transition. In
contrast to first order transitions, critical phase trams# are ‘announced’ by an
important increase of the fluctuations. The Ising model auaee lattice described
above is an ideal model for visualising what is going on clwsa second order
phase transition.

An interesting object in connection with phase transitimthe pair correlation
function. As the Ising model in itself is not dynamic, onlyetktatic correlation
function is relevant. It is given by

1
g(m,n) = (syusp) = Ezsmsn exp |BJ Y sisj+PH)Y si|. (7.47)
s {7 i

Instead of the pair correlation function defined in (7.4Tg tbare’ correlation
function is usually considered:

g(i, ) =g, j)—(si)? (7.48)
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which decays to zero ifandj are far apart. The physical meaning of the bare pair
correlation function is similar to that defined above for emllar systems. Suppose
we sit on a sitg, theng(i, j) gives us the probability of finding the same spin value
on site j in excess of the average spin on the lattice. The correldtiantion
defined here obviously depends on the relative orientatichamd j because the
lattice is anisotropic. However, for large distances tieipehdence is weak and the
pair correlation function will depend only on the distanggbetweeni andj. The
decay of the bare correlation function below the transitemperature is given by

g ~e’ls, larger. (7.49)

¢ is called thecorrelation length it sets the scale over which each spin has a
significant probability of finding like spins in excess of tineerage probability. One
can alternatively interpret as a measure of the average linear size of the domains
containing minority spins. If we approach the transitiomperature, more and
more spins turn over. Below the transition temperature sirstem consists of a
connected domain (the ‘sea’) of majority spins containirglghds’ of minority
spin. When approaching the transition temperature, tlamds increase in size
and atT. they must grow into a connected land cluster which extendsutfin
the whole system in order to equal the surface of the sea,hwdilgo extends
through the whole system. For higher temperature the syistdilke a patchwork

of unconnected domains of finite size. The picture descrim@ implies that
at the transition the correlation length will become of thdev of the system size.
Indeed, it turns out that at the critical phase transitiadbrrelation length diverges
and the physical pictuf is that of huge droplets of one spin containing smaller
droplets of the other spin containing still smaller droplet the first spin and so
on. This suggests that the system is self-similar for a lemgge of different length
scales: if we zoomed in on part of a large Ising lattice at thasp transition, we
would notice that the resulting picture is essentially stidiguishable from the one
presented by the lattice as a whole: the differences onlwshmat the smallest
scales, i.e. comparable to the lattice constant which &sm® when zooming in.
This scale invariance is exploited in renormalisation tg&o 2 which has led to a
qualitative and quantitative understanding of criticahgh transitions.

One of the consequences of the scale invariance at theatpti@se transition is
that the form of the correlation function should be scalaimant, that is, it should
be essentially invariant under a scale transformation sa#ing factorb, and it
follows from renormalisation theory that at the transitigntransforms under a

fMore recently, the more extended conformal symmetry has begloited in a similar fashion as
the mere scale invariance. Conformal field theory has tuouta very powerful tool to study phase
transitions in two-dimensional systerfis:31
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rescaling as
g(r) =¥ Vg(rb) (7.50)
(d is the system dimension). From this, the formgak found as
Constant

The exponenty is called thecritical exponent It turns out that this exponent
is universal if we change details in the Hamiltonian, like adding nexanest
neighbour interactions to it, the temperature at which thedition takes place
will change, but the critical exponent will remain exactly the same. Systems
which are related through such ‘irrelevant’ changes in tlzniftonian are said
to belong to the samaniversality class If the changes to the Hamiltonian are
too drastic, however, like changing the number of possitd¢ées of a spin (for
example 3 or 4 instead of 2 in the Ising model), or if we addrgiroext nearest
neighbour interactions with a sign opposite to the neareghtour ones, the
critical behaviour will change: we cross over to a differaniversality class.

It should be noted that the spin pair-correlation functienniot the only
correlation function of interest. Other correlation fuoos can be defined, which
we shall not go into, but it is important that these give rigenew exponents.
Different correlation functions may have the same expgrarheir exponents may
be linearly dependent. The set of independent exponentsedetiie universality
class. In the case of the Ising model this set contains tworexpts, the ‘magnetic’
one,yy, which we have encountered above, and the ‘thermal’ exgonefwhich
is related to a different correlation function).

The critical exponents not only show up in correlation fimts$, they also
describe the behaviour of thermodynamic quantities closthe transition. For
example, in magnetic systems, the magnetic susceptibilitydefined as

Xm = (ng;)T, (7.52)

exhibits a singularity near the phase transition:
Am(T) ~|T=Tc|™Y (7.53)

wherey is also called the ‘critical exponent’; its value is relatedhe y-exponents
by y = (-d +2yp)/yr. For the specific heaty, the correlation lengtly and the
magnetisationn we have similar critical exponents:
cp(T) o< |T—Tel™®
$(T) o< |T—Te|™
mT)x (-T+T)P;  T<Te (7.54a)
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and, moreover, we have an exponent for the behaviour of tlgnatisation with
varying small magnetic field at the transition temperature:

m(H, Tg) = H'. (7.55)

For the case of the two-dimensional Ising model on a squ#tiedawe know the
values of the exponents from the exact solution:

a=0, p=1/8, y="71/4,
0 =15, v=1. (7.56)

The value 0 of the exponentdenotes a logarithmic divergence:
cgox In|T - Tgl. (7.57)

The fact that there are only twp-exponents and the fact that the five exponents
expressing the divergence of the thermodynamic quanttieexpressed in terms
of these indicates that there must exist relations betweerxponentsy, § etc.
These relations are calledaling laws- examples are:

a+2f+y=2 and (7.58a)
2—a=dv, (7.58b)

with d the dimension of the system. The Ising exponents listedebatisfy these
scaling laws indeed.

In dynamical versions of the Ising model, the relaxationetiaiso diverges with
a critical exponent. The correlation time is the time scaleravhich a physical
quantity A relaxes towards its equilibrium value— it is defined by

_fg"’t[A(t)—Z]dt

T= — . (7.59)
S5 [Aw -4 a
At the critical point the correlation time diverges accogiio
T= fz_ (760)

This divergence implies that close to the critical point siraulation time needed
to obtain reliable estimates for physical quantities iases dramatically. This
phenomenon is callectitical slowing down For most models with a Hamiltonian

fIn Section 7.4 we shall give another definition of the cottietatime which describes the decay
of the time correlation function rather than that of the ditgmA itself.
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Figure 7.5: Typical behaviour of a physical quantitys. temperature close to the critical
point for various system sizes.

containing only short-range couplings, the value of theomemtz is close to 2.
For the Ising model in two dimensions, the dynamic criticgbanent has been
determined numerically — its value is~ 2.125.32

For systems far from the critical point, the correlationgténis small, and it
is easy to simulate systems which are considerably largar the correlation
length. The values of physical quantities measured wilhtbenverge rapidly to
those of the infinite system. Close to the critical point, beer, the correlation
length of the infinite system might exceed the size of the kited system — hence
the system size will set the scale over which correlations edend. This part
of the phase diagram is called tliaite size scaling regian It turns out that
it is possible to extract information concerning the catiexponents from the
behaviour of physical quantities with varying system sipse to the critical point.
Of course, for a finite system, the partition function anddeetihe thermodynamic
gquantities are smooth functions of the system parameteeneehthe divergences
of the critical point are absent. However, we can still seegaagure of these
divergences in the occurence of peaks, which in the scadigigm ¢ > L) become
higher and narrower with increasing system size. Also,ahation of the peak may
be shifted with respect to the location of the critical poilihe general behaviour
is shown in Figure 7.5. These characteristics of the peakesha a function of
temperature are described in terms of additional expontrso-calledinite size
scaling exponents

« The shift in the position of the maximum with respect to théeal temperature
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is described by
To(L) — Te(oo) ox L1 (7.61)

« The width of the peak scales as

AT(L) x L7°. (7.62)

» The peak height grows with the system size as

Amax(L) X Lam . (763)

The behaviour of a system is determined by two length scalesandé/ a, with
¢ the correlation length of the infinite system, which in thétésize scaling region
is larger than the linear system size As in the critical region, the fluctuations
determining the behaviour of the system extend over langgthescales; physical
properties should be independent @f This leavesL/é as the only possible
parameter in the system and this leads to the so-called §izigescalingAnsatz
Defining

T-T
= , 7.64
= (7.64)
we can formulate the finite size scalidgsatzas follows:
A;(€) L ]
= . 7.65
Axo(€) f $ool6) ( )
Suppose the exponent of the critical divergence of the dyaatis o:
Ao x € 7. (7.66)

Using, moreover, the scaling form of the correlation lenfjtae™", we can write
the scalingAnsatzas
Ap(e) =¢ 7 f(Le") (7.67)

which can be reformulated as
Ar(e) = L7V (LYY ¢) (7.68)

where we have replaced the scaling functignby another onep, by extracting a
factor(L €*)°’V from f and then writing the remaining function in terms(of¥)!’v
rather than(L €¥). Obviously, ¢(x) will have a maximumgmnay for some value
X = xmax With a peak widthAx. From Eq. (7.68) we then see immediately that:

« The peak height scales a4'", henceo,, = o/v.



204 Classical equilibrium statistical mechanics

« The peak position scales as'’", hencel =1/v.
« The peak width also scales 5"V, hence® = 1/v.

These are the finite size scaling laws for any thermodynaro@ntity which
diverges at the critical point as a power law. We see that ifmanitor the
peak height, position and width as a function of system simecan extract the
correlation length exponent and the exponend associated withA from the
resulting data.

In reality this approach poses difficulties as the fluctustiincrease near the
critical point and hence the time needed for obtaining bédiavalues for the
physical quantities measured increases too. This incrisasgonger when the
system size increases — hence calculations for largemsgstguire more time, not
only because more computational effort is used per timefstea larger system,
but also because we need to generate more and more conbigsrati order to
obtain reliable results. An extra complication is that thetilations are not only
huge, but they correlate over increasing time scales, andithulation time must
be at least a few times the relaxation time in order to ob&liable estimates for the
physical quantities. In Chapter 15 we shall discuss varinathods for reducing
the dynamic exponertin Monte Carlo type simulations.

We have presented only the most elementary results of the fiide scaling
analysis and the interested reader is invited to consulerapecialised literature.
There exists a nice collection of key papers on the $fedthd a recent volume on
finite size scaling*

7.4 Determination of averages in simulations

In chapters 8 and 10 we shall encounter two simulation metHod classical
many-particle systems: the molecular dynamics (MD) methatithe Monte Carlo
(MC) method. During a simulation of a many-particle systesing either of
these methods, we can monitor various physical quantities determine their
expectation values as averages over the configurationsajedén the simulation.
We denote such averages as ‘time averages’ although the timoeddoes not
necessarily denote physical time. For a physical quadtitthe time average is

. 7
A=— A, 7.
1L A (7.69)

If the system size and the simulation time are large enouuset averages will
be very close to the averages in a macroscopic experimeygtdrns. Usually,
the system sizes and simulation times which can be achieneedinaited and it
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is important to find an estimate of the error bounds assatiatth the measured
average. These are related to the standard deviatathe physical quantity:

o = (A?)—(A)2. (7.70)

The ensemble average-) is an average over many independent simulations.

We can estimate the standard deviation as a time average:

o?=A2-A (7.71)

For a long enough simulation this reduces to the ensembleagee and the
expectation value of this estimate becomes independerteo§itnulation time.
Equation (7.71) estimates the standard deviation irrdisgeof time correlations
between subsequent samples generated by the simulatiomevidn thestandard
deviation of the mean valuef A calculated overM samples generated by the
simulation, i.e. the statistical error, depends on the remobindependensamples
generated in the simulation, and this is the total numbeaofdes divided by the
correlation ‘time’r, measured in simulation steps.

In order to study the standard deviation of the mean (thesstat error), we first
analyse the time correlations. These manifest themsefvdseitime correlation
function:

canlk) = ((An = (An) Ansk = (Ansic))) = (ApApsi) — (A (7.72)

Note that the right hand side of this expression does notrikpa n because
of time translation symmetry. Fde = 0 this function is equal tar?, and time
correlations manifest themselves in this function assgmionzero values fot #
0. The time correlation function can be used to determinériegrated correlation
timet, defined as

[e.0]
r=l y ol (7.73)
2 nE=00 €a4(0)

where the facton/2 in front of the sum is chosen such as to guarantee that for
a correlation function of the fornexp(—|z|/7) with 7 > 1, the correlation time
is equal tor. Note that this definition of the time correlation is diffatefrom
that given in Eq. (7.59). The current one is more useful asiit loe determined
throughout the simulation, and not only at the beginning nwitee gquantity A
decays to its equilibrium value. A third definition is tie&ponential correlation
time Texp:

CAA(t; , larget. (7.74)

Texp= —t/ln canl
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This quantity is the slowest decay time with which the systefaxes towards
equilibrium (such as happens at the start of a simulationrvthe system is not
yet in equilibrium), and it is in general not equal to the grited correlation time.

Now let us return to the standard deviation of the mean valueas determined
in a simulation generating/ configurations (with time correlations). It is easy to
see that the standard deviation in the meaisg given by

e={ — ApAp Y= =) A,
M2 n,m=1 Mn:1

If we definel = n — m, then this can be rewritten as

2 | m
=7 Y. caaln-m). (7.75)

n,m=1

) 1 M n-M
€= Y. > caalD. (7.76)
n=1[=n-1
The lowest and highest values taken onitgre—(M — 1) and M — 1 respectively,
and some fixed value dfbetween these two boundaries occMs || times. This
leads to the expression

largeM _ T

¢ 2—c4(0) =2ﬁ02. (7.77)

, 1 M (1 |l|) 0
= — 7 ;]CAA
Ml:—(M—l) M

We see that time correlations cause the etriar be multiplied by a factor of/2t
w.r.t. the uncorrelated case. The obvious procedure farohing the statistical
error is to first estimate the standard deviation and thestadiron time, using (7.71)
and (7.73) respectively, and then calculate the error USiIrty).

In practice, however, a simpler method is preferred. Thaesbf the physical
guantities are recorded in a file. Then the data sequenc®jfpel into a number
of blocks of equal size which is larger than the correlatiomet We calculate the
averages ofA within each block. For blocks of sizes, the j-th block average is

then given as
. 1 m(j+1)

Aj=— Y A (7.78)
m k=jm+1

The averages of the physical quantities in different bloakes uncorrelated and
the error can be determined as the standard deviation ofrtbernelated block
averages. This method should yield errors which are indégo@rof the block size
provided the latter is larger than the correlation time aufficgently small to have
enough blocks to calculate the standard deviation reliabhis method is called
data-blocking
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Exercises

7.1 In this problem we analyse the relation between the diffisiescattering
cross section for elastic X-ray scattering by a collectibparticles and the
structure factor in more detail. Consider an incoming X:rétyr wave vector
ko, which is scattered intk; by particle numbey atr; at timez’. When the
wave ‘hits’ particlej at timet’, its phase factor is given by

eikgrj—iwt"

(a) Give the phase of the scattered wave when it arrives atdteetor located
atr attimez.

(b) We assume that the incoming rays have intengityshow that the average
total intensity of waves with wave vectky arriving at the detector is given

by
N .
I(k],r) — 1'0< Z elAk(l‘l_l'j)>
1,j=1
with Ak = k; —ko.
(c) Show that this expression is equal ¥VS(Ak), where S is the static
structure factor, defined in terms of the correlation furty as

Sk)=1+ nfdsr g(r)eikr.

(n is the particle densitw/V.)

7.2 The magnetic susceptibility of the Ising model onar L square lattice is
defined byy = dm/dH, wherem is the magnetisation antd the magnetic
field.

(&) Show that the magnetic susceptibility can be written as

p— 1 . . —_— . 2
N CRC)

(b) A scaling exponent associated with the magnetic correlation function
[see Eq. (7.48)] is defined by

glr) ~ p2-d-n,
Assuming that close to the critical point this form extendsatdistance
&, whereé is the correlation length, find the following scaling redeti
betweeny, n andv:

Yy=v(2-n).
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