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Computational methods for lattice field
theories

15.1 Introduction

Classical field theory enables us to calculate the behaviour of fields within the
framework of classical mechanics. Examples of fields are elastic strings and sheets,
and the electromagnetic field. Quantum field theory is an extension of ordinary
quantum mechanics which not only describes extended media such as string and
sheets, but which is also supposed to describe elementary particles. Furthermore,
ordinary quantum many-particle systems in the grand canonical ensemble can be
formulated as quantum field theories. Finally, classical statistical mechanics can
be considered as a field theory, in particular when the classical statistical model is
formulated on a lattice, such as the Ising model on a square lattice, discussed in
Chapter 7.

In this chapter we shall describe various computational techniques which are
used to extract numerical data from field theories. Renormalisation is a procedure
without which field theories cannot be formulated consistently in continuous
space-time. In computational physics, we formulate field theories usually on
a lattice, thereby avoiding the problems inherent to a continuum formulation.
Nevertheless, understanding the renormalisation concept is essential in lattice field
theories in order to make the link to the real world. In particular, we want to make
predictions about physical quantities (particle masses, interaction constants) which
are independent of the lattice structure, and this is precisely where we need the
renormalisation concept.

Quantum field theory is difficult. It does not belong to the standard repertoire of
every physicist. We try to explain the main concepts and ideas before entering into
computational details, but unfortunately we cannot give proofs and derivations, as
a thorough introduction to the field would require a book on its own. For details,
the reader is referred to refs. 1–5. In the next section we shall briefly describe what
quantum field theory is, and present several examples. In the following section,
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496 Computational methods for lattice field theories

the procedure of numerical quantum field theory will be described in the context of
renormalisation theory. Then we shall describe several algorithms for simulating
field theory, and in particular methods for reducing critical slowing down, a major
problem in numerical field theory computations. Finally, we shall consider some
applications in quantum electrodynamics (QED) and quantum chromodynamics
(QCD).

15.2 Quantum field theory

To understand quantum field theory, it is essential to be accustomed to the path-
integral formalism, see Section 12.4, so let us recall this concept briefly.

Consider a single particle in one dimension. The particle can move along the
x-axis and its trajectory can be visualised in 1+1 dimensional space–time. Fixing
initial and final positions and time to (ti, xi), (tf, xf) respectively, there is (in general)
one particular curve in the (t , x)-plane, the classical trajectory, for which the action
S is stationary. The action is given by

S(xi, xf; ti, tf) =
�tf

ti

d t L(x, ẋ, t ) (15.1)

where L(x, ẋ, t ) is the Lagrangian. In quantum mechanics, nonstationary paths are
allowed too, and the probability to go from an initial position xi to a final position
xf is given by

�

[Dx(t )]e−i S/ℏ =
�

xf

�

�

�e−i (ti−tf)H/ℏ
�

�

�xi

�

, (15.2)

where H is the Hamiltonian of the system. The integral
�

[Dx(t )] is over all possible
paths with fixed initial and final values xi and xf respectively. If we send Planck’s
constant ℏ to zero, the significant contributions to the path integral will be more
and more concentrated near the stationary paths, and the stationary path with the
lowest action is the only one which survives when ℏ= 0.

Now consider a field. The simplest example of a field is a one-dimensional
string, which we shall consider as a chain of particles with mass m, connected
by springs such that in equilibrium the chain is equidistant with spacing a. The
particles can move along the chain – the displacement of particle n with respect to
the equilibrium position is called φn . Fixed, free, or periodic boundary conditions
can be imposed. The chain is described by the action

S = 1

2

�tf

ti

�

�

n

1

2
mφ̇2

n(t )− A

�

φn+1(t )−φn(t )

a

�2�

d t . (15.3)

A is a constant, and some special conditions are needed for the boundaries. In
a quantum mechanical description we again use the path integral, which gives us
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the probability density for the chain to go from an initial configuration Φ
i = {φ(i)

n }

at time ti to a final configuration Φ
f = {φ(f)

n } at time tf (note that Φ(i,f) denotes a
complete chain configuration):

�

[DΦ(t )]e−i S/ℏ (15.4)

where the path integral is over all possible configurations of the field Φ in the course
of time, with fixed initial and final configurations.

We want to formulate this problem now in continuum space. To this end we
replace the discrete index n by a continuous index x1, and we replace the interaction
term occuring in the summand by the continuous derivative:

S = 1

2

�tf

ti

d t

�

d x1

�

mφ̇(t , x1)2 − A

�

∂φ(t , x1)

∂x1

�2�

. (15.5)

The field φ(t , x1) can be thought of as a sheet whose shape is given as a height
φ(t , x1) above the 1+1 dimensional space–time plane. In the path integral, we must
sum over all possible shapes of the sheet, weighted by the factor ei S/ℏ. The field
can be rescaled at will, as it is integrated over in the path integral (this rescaling
results in an overall prefactor), and the time and space units can be defined such as
to give the time derivative a prefactor 1/c with respect to the spatial derivative (c is
the speed of light), and we obtain

S =
�

d 2x
1

2
∂µφ(x)∂µφ(x), (15.6)

where we have used x to denote the combined space–time coordinate x ≡ (t , x1) ≡
(x0, x1). From now on, we put c ≡ ℏ ≡ 1 and we use the Einstein-summation
convention according to which repeated indices are summed over. The partial
space–time derivatives ∂µ,∂µ are denoted by:

∂µ = ∂

∂xµ
, ∂µ = ∂

∂xµ
. (15.7)

Furthermore we use the Minkowski metric:

aµaµ = a2
0 −a2. (15.8)

The fact that we choose c ≡ ℏ≡ 1 leaves only one dimension for distances in space–
time, and masses and energies. The dimension of inverse distance is equal to the
energy dimension, which is in turn equal to the mass dimension.

Using partial integration, we can reformulate the action as

S =−
�

d 2x
1

2
φ(x)∂µ∂

µφ(x), (15.9)
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where we have assumed periodic boundary conditions in space and time (or
vanishing fields at the integral boundaries, which are located at infinity) to neglect
integrated terms.

If, apart from a coupling to its neighbours, each particle had also been coupled
to an external harmonic potential m2φ2/2, we would have obtained

S =−
�

d 2x
1

2
φ(x)(∂µ∂

µ+m2)φ(x). (15.10)

Note that the Euler-Lagrange equations for the field are

(∂µ∂µ+m2)φ(x) = 0; (15.11)

which is recognised as the Klein-Gordon equation, the straightforward covariant
generalisation of the Schrödinger equation.†

Quantum field theory is often used as a theory for describing particles. The
derivation above started from a chain of particles, but these particles are merely
used to formulate our quantum field theory, and they should not be confused with
the physical particles which are described by the theory. The difference between
the two can be understood as follows. Condensed matter physicists treat wave-like
excitations of the chain (i.e. a one-dimensional ‘crystal’) as particles – they are
called phonons. Note that the ‘real’ particles are the atoms of the crystal. In field
theory, the only ‘real’ particles are the excitations of the field.

In fact, we can imagine that a wave-like excitation pervades our sheet, for
example

φ(t , x1) = ei px1−iωt (15.12)

(here x1 denotes the spatial coordinate). This excitation carries a momentum p and
an energy ℏω, and it is considered as a particle. We might have various waves as a
superposition running over the sheet: these correspond to as many particles.

Let us try to find the Hamiltonian corresponding to the field theory presented
above (the following analysis is taken up in some detail in problems 15.2 and 15.3).
We do this by returning to the discretised version of the field theory. Let us first
consider the ordinary quantum description of a single particle of mass 1, moving in
one dimension in a potential mx2/2. The Hamiltonian of this particle is given by

H = p2

2
+ m

2
x2 (15.13)

with [p, x] = −i . In the example of the chain we have a large number of such
particles, but each particle can still be considered as moving in a harmonic potential,

†The Klein-Gordon equation leads to important problems in ordinary quantum mechanics, such
as a nonconserved probability density and an energy spectrum which is not bounded from below.
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and after some calculation we find for the Hamiltonian:

H =
�

n

�

π̂2
n + (φ̂n − φ̂n−1)2 +m2φ̂2

n

�

, (15.14)

with
[π̂n , φ̂l ] =−iδnl . (15.15)

The hats are put above φ and π to emphasise that they are now operators. The
Hamiltonian can be diagonalised by first Fourier transforming and then applying
operator methods familiar from ordinary quantum mechanics to it. The result is2, 6

H = 1

2

�π

−π
dk ωk â†

k
âk (15.16)

where â†
k

is a creation operator: it creates a Fourier mode

φn = ei kn (15.17)

and âk is the corresponding destruction or annihilation operator. In the ground state
(the ‘vacuum’) there are no modes present and the annihilation operator acting on
the ground state gives zero:

ak |0 〉= 0. (15.18)

The Fourier modes represent energy quanta of energy ℏω; the number operator

nk = a†
k

ak , acting on a state |ψ〉 counts the number of modes (quanta) with wave
vector k, present in that state. The Hamiltonian (15.16) operator then adds all the
energy quanta which are present in the state.

In fact, âk is given in terms of the Fourier transforms of the φ̂ and π̂ operators:

âk = 1
�

4πωk

�

ωk φ̂k + i π̂k

�

, (15.19)

analogous to the definition of creation and annihilation operators for the harmonic
oscillator. The frequency ω is related to k by

ωk =ω−k =
�

m2 +2(1−cosk). (15.20)

For small k we find the continuum limit:

ωk =
�

m2 +k2 (15.21)

which is the correct dispersion relation for a relativistic particle with mass m (in
units where c = ℏ= 1).
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We see that the Hamiltonian (15.16) of a particular configuration is simply given
as the sum of the energies of a set of one-particle Hamiltonians (remember these
particles are nothing but Fourier-mode excitations of the field): the particles do not
interact. Therefore, the field theory considered so far is called free field theory. The
eigenstates of the free field theory are

|k1, . . . ,kM 〉= â†
k1

. . . â†
kM

|0 〉 (15.22)

for arbitrary M , which denotes the number of particles present. It is possible
to have the same ki occurring more than once in this state (with an appropriate
normalisation factor): this means that there is more than one particle with the
same momentum. The state |0 〉 is the vacuum state: it corresponds to having no
particles. The lowest energy above the vacuum energy is that corresponding to a
single particle at rest (k = 0): the energy is equal to the mass. In Chapter 11 we have
seen that for a statistical field theory the inverse of the lowest excitation energy is
equal to the correlation length:

m ∼ 1/(ξa). (15.23)

However, this holds for a statistical field theory where we do not have complex
weight factors – these can be made real by an analytical continuation of the physics
into imaginary time: t → i t (see also Section 12.2.4). In that case the (continuous)
action in d space–time dimensions reads

S =
�

d d x
1

2

�

∂µφ∂
µφ+m2φ2

�

(15.24)

where now

∂µφ∂
µφ= (∇φ)2 +

�

∂

∂t
φ

�2

(15.25)

i.e. the Minkowski metric has been replaced by the Euclidean metric. The matrix
elements of the time evolution operator now read exp(−S) instead of exp(−S/i ) (for
ℏ≡ 1). We have now a means to determine the particle mass: simply by measuring
the correlation length. In the free field theory, the inverse correlation length is
equal to the mass parameter m in the Lagrangian, but if we add extra terms to the
Lagrangian (see below) then the inverse correlation length (or the physical mass) is
no longer equal to m.

It might seem that we have been a bit light-hearted in switching to the Euclidean
field theory. Obviously, expectation values of physical quantities can be related
for the Minkowski and Euclidean versions by an analytic continuation. In
the numerical simulations we use the Euclidean metric to extract information
concerning the Hamiltonian: this operator is the same in both metrics – only the
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time evolution, and hence the Lagrangian changes when going from one metric to
the other. Euclidean field theory can therefore be considered merely as a trick to
study the spectrum of a quantum Hamiltonian of a field theory which in reality lives
in Minkowski space.

If we add another term to the Lagrangian:

S =
�

d d x

�

1

2
φ(x)(−∂µ∂µ+m2)φ(x)+V [φ(x)]

�

, (15.26)

where V is not quadratic (in that case it would simply contribute to the mass term),
then interactions between the particles are introduced. Usually one considers

V = gφ4(x)/2 (15.27)

and the Lagrangian describes the simplest interesting field theory for interacting
particles, the scalar φ4 theory. The name ‘scalar’ denotes that φ(x) is not a vector.
Vector theories do exist, we shall encounter examples later on. When a potential
is present, the energy is no longer a sum of one-particle energies: the particles
interact.

We have mentioned the probability to go from a particular initial state to another
(final) state as an example of the problems studied in field theory. Our experimental
knowledge on particles is based on scattering experiments. This is a particular
example of such a problem: given two particles with certain initial states, what are
the probabilities for different resulting reaction products, that is, which particles
do we have in the end and what are their momenta? In scalar field theory we
have only one type of particle present. As we have seen in the first chapter of this
book, experimental information on scattering processes is usually given in terms of
scattering cross sections. These scattering cross sections can be calculated – they
are related to an object called S-matrix. The S-matrix is defined as

Sfi = lim
ti→−∞
tf→∞

�

ψf|U (ti, tf)|ψi
�

. (15.28)

Our initial state is one with a particular set of initial momenta as in (15.22),
and similarly for the final state; U (ti, tf) is the time evolution operator,† and the
states ψi,f usually contain a well-defined number of free particles with well-defined
momenta (or positions, depending on the representation).

Scattering cross sections are expressed directly in terms of the S-matrix, and
the latter is related to the Green functions of the theory by the so-called Lehmann–
Symanzik–Zimmermann relation, which can be found for example in Ref. 2. These

†More precisely, the time evolution operator is that for a theory with an interaction switched on at
a time much later than ti and switched off again at a time long before tf.



502 Computational methods for lattice field theories

Green functions depend on a set of positions x1, . . . , xn and are given by

G (x1, . . . , xn) =
�

[Dφ]φ(x1) · · ·φ(xn)e−S/ℏ/

�

[Dφ]e−S/ℏ. (15.29)

Note that xi is a space–time vector, the subscripts do not denote space–time
components. The scattering cross sections are evaluated in the Euclidean metric
– the Minkowskian quantities are obtained by analytical continuation: t → i t .

As the initial and final states in a scattering experiment are usually given by the
particle momenta, we need the Fourier transform of the Green’s function, defined
as

G (k1, . . . ,kn)δ(k1 +·· ·+kn)(2π)d =
�

d d x1 . . .d d xnei k1·x1+···+i kn ·xn G (x1, . . . , xn). (15.30)

The d-dimensional delta-function reflects the energy-momentum conservation of
the scattering process, which is related to the space–time translation invariance of
the Green’s function.

For the free field theory it is found that

G (k,−k) = 1

k2 +m2
(15.31)

which leads to the real-space form:

G (x −x ′) = e−|x−x ′|m

|x −x ′|η
; large |x −x ′|, (15.32)

with η= (d−1)/2. We see that the Green function has a finite correlation length ξ=
1/m. Higher-order correlation functions for the free field theory can be calculated
using Wick’s theorem: correlation functions with an odd number of φ-fields vanish,
but if they contain an even number of fields, they can be written as a symmetric
sum over products of pair-correlation functions, for example

G(x1, x2, x3, x4) =
�

φ(x1)φ(x2)φ(x3)φ(x4)
�

=
�

φ(x1)φ(x2)
��

φ(x3)φ(x4)
�

+
�

φ(x1)φ(x3)
��

φ(x2)φ(x4)
�

+
�

φ(x1)φ(x4)
��

φ(x2)φ(x3)
�

. (15.33)

In fact, it is well known that for stochastic variables with a Gaussian distribution,
all higher moments can be formulated similarly in terms of the second moment –
Wick’s theorem is a generalisation of this result.



15.3. Interacting fields and renormalisation 503

15.3 Interacting fields and renormalisation

The free field theory can be solved analytically: all the Green functions can be given
in closed form. This is no longer the case when we are dealing with interacting
fields. If we add for example a term gφ4 to the free field Lagrangian, the only way
to proceed analytically is by performing a perturbative analysis in the coupling
constant g . It turns out that this gives rise to rather difficult problems. The terms
in the perturbation series involve integrals over some momentum coordinates, and
these integrals diverge! Obviously our predictions for physical quantities must be
finite numbers, so we seem to be in serious trouble. Since this occurs in most
quantum field theories as soon as we introduce interactions, it is a fundamental
problem which needs to be faced.

To get a handle on the divergences, one starts by controlling them in some
suitable fashion. One way to do this is by cutting off the momentum integrations
at some large but finite value Λ. This renders all the integrals occurring in the
perturbation series finite, but physical quantities depend on the – arbitrary – cut-off
Λ which is still unaccepTable. Another way to remove the divergences is by
formulating the theory on a discrete lattice. This is of course similar to cutting of
momentum integrations, and the lattice constant a used is related to the momentum
cut-off by

a ∼ 1/Λ. (15.34)

Such cut-off procedures are called regularisations of the field theory.
We must remove the unphysical cut-off dependence from the theory. The way

to do this is to allow the coupling constant and mass constants of the theory to
be cut-off dependent and then require that the cut-off dependency of the Green
functions disappears.† There are infinitely many different Green’s functions and
it is not obvious that these can all be made cut-off independent by adjusting only
the three quantities m, g and φ. Theories for which this is possible are called
renormalisable. The requirement that all terms in the perturbative series are merely
finite without a prescription for the actual values, leaves some arbitrariness in the
values of field scaling, coupling constant and mass – we use experimental data to
fix these quantities.

To be more specific, suppose we carry out the perturbation theory to some order.
It turns out that the resulting two-point Green’s function G (k,−k) assumes the form
of the free-field correlation function (15.31) with a finite mass parameter plus some
cut-off dependent terms. Removing the latter by choosing the various constants of
the theory (m, g , scale of the field) in a suitable way, we are left with

G (k,−k) = 1/
�

k2 +m2
R
�

(15.35)

†In addition to mass and coupling constant, the field is rescaled by some factor.
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where mR is called the ‘renormalised mass’ – this is the physical mass which is
accessible to experiment. This is not the mass which enters in the Lagrangian and
which we have made cut-off dependent – the latter is called the ‘bare mass’, which
we shall now denote by mB. The value of the renormalised mass mR is not fixed
by the theory, as the cut-off removal is prescribed up to a constant. We use the
experimental mass to ‘calibrate’ our theory by fixing mR. In a similar fashion, we
use the experimental coupling constant, which is related to the four-point Green
function, to fix a renormalised coupling constant gR (see the next section).

The renormalisation procedure sounds rather weird, but it is certainly not some
arbitrary ad hoc scheme. The aim is to find bare coupling constants and masses,
such that the theory yields cut-off independent physical (renormalised) masses and
couplings. Different regularisation schemes all lead to the same physics. We need
as many experimental data as we have parameters of the theory to adjust, and
having fixed these parameters we can predict an enormous amount of new data
(in particular, all higher order Green’s functions). Moreover, the requirement that
the theory is renormalisable is quite restrictive – for example, only the φ4 potential
has this property; changing the φ4 into a φ6 destroys the renormalisability of the
theory.

In computational physics we usually formulate the theory on a lattice. We
then choose values for the bare mass and coupling constant and calculate various
physical quantities in units of the lattice constant a (or its inverse). Comparison
with experiment then tells us what the actual value of the lattice constant is.
Therefore the procedure is somehow the reverse of that followed in ordinary
renormalisation, although both are intimately related. In ordinary renormalisation
theory we find the bare coupling constant and mass as a function of the cut-off
from a comparison with experiment. In computational field theory we find the
lattice constant as a function of the bare coupling constant from comparison with
experimental data.

Let us consider an example. We take the Euclidean φ4 action in dimension d = 4:

S = 1

2

�

d 4x
�

[∂µφ(x)][∂µφ(x)]+m2φ2(x)+ gφ4(x)
�

(15.36)

and discretise this on the lattice, with a uniform lattice constant a. Lattice points
are denoted by the four-index n = (n0,n1,n2,n3). A lattice point n corresponds
to the physical point x = (an0, an1, an2, an3) = an. The discretised lattice action
reads

SLattice =
1

2

�

n

a4

�

3
�

µ=0

�

φ(n +eµ)−φ(n)

a

�2

+m2φ2
n + gφ4(n)

�

. (15.37)
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We rescale the φ-field, the mass and the coupling constant according to

φ(n) →φ(n)/a; m → m/a and g → g , (15.38)

to make the lattice action independent of the lattice constant a:

SLattice =
1

2

�

n

�

3
�

µ=0

�

φ(n +eµ)−φ(n)
�2 +m2φ2

n + gφ4(n)

�

. (15.39)

Now we perform an MC or another type of simulation for particular values of m

and g . We can then ‘measure’ the correlation length in the simulation. This then
should be the inverse of the experimental mass, measured in units of the lattice
constant a. Suppose we know this mass from experiment, then we can infer what
the lattice constant is in real physical units.

Life is however not as simple as the procedure we have sketched suggests. The
problem is that in the generic case, the correlation length is quite small in units
of lattice constants. However, a lattice discretisation is only allowed if the lattice
constant is much smaller than the typical length scale of the physical problem.
Therefore, the correlation length should be an order of magnitude larger than the
lattice constant. Only close to a critical point does the correlation length assume
values much larger than the lattice constant. This means that our parameters m and
g should be chosen close to a critical point. The φ4 theory in d = 4 dimensions has
one critical line,7 passing through the point m = g = 0, the massless free field case.
Therefore, m and g should be chosen very close to this critical line in order for the
lattice representation to be justifiable.

As the experimental mass of a particle is a fixed number, varying the lattice
constant a forces us to vary g and m in such a way that the correlation length
remains finite. Unfortunately this renders the use of finite size scaling techniques
impossible: the system size L must always be larger than the correlation length:
a ≪ ξ< L. †

The fact that the lattice field theory is always close to a critical point implies
that we will suffer from critical slowing down. Consider a Monte Carlo (MC)
simulation of the field theory. We change the field at one lattice point at a
time. At very high temperature, the field values at neighbouring sites are more
or less independent, so after having performed as many MC attempts as there are
lattice sites (one MCS), we have obtained a configuration which is more or less
statistically independent from the previous one. If the temperature is close to the

†In the case where physical particles are massless, so that the correlation length diverges, finite
size scaling can be applied. Finite size scaling applications in massive particle field theories have
however been proposed; see Ref. 8.
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critical temperature, however, fields at neighbouring sites are strongly correlated,
and if we attempt to change the field at a particular site, the coupling to its
neighbours will hardly allow a significant change with respect to its previous
value at that site. However, in order to arrive at a statistically independent
configuration, we need to change the field over a volume of linear size equal to
the correlation length. If that length is large, it will obviously take a very long
time to change the whole region, so this problem gets worse when approaching the
critical point. Critical slowing down is described by a dynamic critical exponent
z which describes the divergence of the decay time τ of the dynamic correlation
function [see Chapter 7, Eq. (7.73)]:

τ= ξz , (15.40)

where ξ is the correlation length of the system.
In recent years, much research has aimed at finding simulation methods for

reducing the critical time relaxation exponent. In the following section we shall
describe a few straightforward methods developed for simulating quantum field
theories, using the φ4 scalar field theory in two dimensions as a testing model.
In Section 15.5 we shall focus on methods aiming at reducing critical slowing
down. We shall then also discuss methods devised for the Ising model and for a
two-dimensional model with continuous degrees of freedom.

In the final sections of this chapter, simulation methods for gauge field theories
(QED, QCD) will be discussed.

15.4 Algorithms for lattice field theories

We start by reviewing the scalar Euclidean φ4 field theory in d dimensions in more
detail. The continuum action is

SE = 1

2

�

d d x
�

∂µφ(x)∂µφ(x)+m2φ2(x)+ gφ4(x)
�

(15.41)

(the subscript E stands for Euclidean). For g = 0, we have the free field theory,
describing noninteracting spinless bosons. Performing a partial integration using
Green’s first identity, and assuming vanishing fields at infinity, we can rewrite the
action as

SE = 1

2

�

d d x
�

−φ(x)∂µ∂
µφ(x)+m2φ2(x)+ gφ4(x)

�

. (15.42)

The scalar field theory can be formulated on a lattice by replacing derivatives
by finite differences. We can eliminate the dependence of the lattice action on the
lattice constant by rescaling the field, mass and coupling constant according to

φ̂n = ad/2−1φ(an); m̂ = am; ĝ = a4−d g . (15.43)
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For the four-dimensional case, d = 4, we have given these relations already in the
previous section. Later we shall concentrate on the two-dimensional case, for which
the field φ is dimensionless. In terms of the rescaled quantities, the lattice action
reads:

SLattice
E = 1

2

�

n

�

−
�

µ
φ̂nφ̂n+µ+ (2d +m̂2)φ̂2

n + ĝ φ̂4
n

�

. (15.44)

The arguments n are vectors in d dimensions with integer coefficients and the sum
over µ is over all positive and negative Cartesian directions. The action (15.44)
is the form which we shall use throughout this section and it will henceforth be
denoted as S. From now on we shall omit the carets from the quantities occurring
in the action (15.44). As we shall simulate the field theory in the computer, we
must make the lattice finite – the linear size is L.

We now describe the analytical solution of this lattice field theory for the case
g = 0 (free field theory). The free field theory action is quadratic – it can be written
in the form

SE = 1

2

�

nl

φnKnlφl , (15.45)

where
Knl = (2d +m2)δnl −

�

µ
δn,l+µ. (15.46)

Defining Fourier-transformed fields as usual:

φk =
�

n

φnei k·n ; (15.47a)

φn = 1

Ld

�

k

φk e−i k·n , (15.47b)

where n and l run from 0 to L −1, periodic boundary conditions are assumed, and
the components of k assume the values 2mπ/L, m = 0, . . . ,L − 1. Then we can
rewrite the free-field action as

SE = 1

2L2d

�

k

φk Kk,−kφ−k , (15.48)

as Kk,−k are the only nonzero elements of the Fourier transform Kk,k ′ :

Kk,k ′ = Ld

�

−
�

µ
2cos(kµ)+ (2d +m2)

�

δk,−k ′ =

Ld

�

4
�

µ
sin2

kµ

2
+m2

�

δk,−k ′ (15.49)
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where the sum is now only over the positive µ directions; kµ is the µ-component of
the Fourier wavevector k.

The partition function

Z =
�

[Dφk ]exp

�

− 1

2L2d

�

k

φk Kk,−kφ−k

�

=

�

[Dφk ]exp

�

− 1

2L2d

�

k

|φk |2Kk,−k

�

(15.50)

(up to a normalisation factor) is now a product of simple Gaussian integrals, with
the result (N = Ld ):

Z = (2πN 2)N /2/
�

k

�

Kk,−k = (2πN 2)N /2/
�

detK = (2πN 2)N /2
�

det(K −1).

(15.51)
The partition function appears as usual in the denominator of expressions for
expectation values. We can calculate for example the two-point correlation or
Green’s function

�

φnφl

�

. The Fourier transform of this correlation function can
be found quite easily:

�

φnφl

�

= 1

L2d

�

k,k ′

�

φkφk ′
�

ei k·nei k ′·l ; (15.52a)

�

φkφk ′
�

= L2d

Kk,−k
δk,−k ′ . (15.52b)

Taking the small k limit in (15.49) and (15.52) leads to the form (15.31), as it
should be. Taking k = 0, we find

�

φ2
k=0

�

=
��

�

n

φn

�2�

= Ldζ/m2
R, (15.53)

where the factor ζ in the right hand side represents the square of the scaling factor of
the field – from (15.43), ζ= ad−2. This equation enables us therefore to determine
ζ/mR in a simulation: simply by calculating the average value of 〈Φ2〉, Φ=�n φn .

We have seen that according to Wick’s theorem, the correlation functions to
arbitrary order for free fields can always be written as sums of products of two-point
correlation functions. If we switch on the φ4 interaction, we will note deviations
from this Gaussian behaviour to all higher orders. Renormalisation ideas suggest
that it should be possible to express all higher order correlation functions in terms
of second and fourth order correlation functions, if the arguments of the Green’s
function are not too close (that is much farther apart than the cut-off a). The second



15.4. Algorithms for lattice field theories 509

order Green’s functions are still described by the free field form (15.52), but with m

in the kernel Kk,k ′ being replaced by a renormalised mass, mR. The deviations from
the Gaussian behaviour manifest themselves in fourth and higher order correlation
functions – therefore a natural definition of the renormalised coupling constant gR

is

gR =
�

Φ
4
�

−3
�

Φ
2
�2

�

Φ2
�2

(15.54)

where Φ =�n φn .† Equations (15.53) and (15.54) are used below to measure the
renormalised mass and coupling constant in a simulation.

15.4.1 Monte Carlo methods

The problem of calculating expectation values for the interacting scalar field
theory is exactly equivalent to the problem of finding expectation values of a
statistical field theory. Therefore we can apply the standard Monte Carlo (MC)
algorithms of Chapter 10 straightforwardly in order to sample field configurations
with Boltzmann weight exp(−S[φ]). Starting point is the action (15.44). An
obvious method is the Metropolis MC algorithm, in which lattice sites are visited
at random or in lexicographic order, and at the selected site a change in the field is
attempted by some random amount. The change in the field is taken from a random
number generator either uniformly within some interval or according to a Gaussian
distribution (with a suitable width). Then we calculate the change in the action due
to this change in the field. The trial value of the field is then accepted as the field
value in the next step according to the probability

PAccept = e−S[φnew]+S[φold] (15.55)

where the exponent on the right hand side is the difference between the action of
the new and old field at the selected site, keeping the field at the remaining sites
fixed. If PAccept > 1, then the new configuration is accepted.

In Chapter 10 we have already encountered another method which is more
efficient as it reduces correlations between subsequent configurations: the heat bath
algorithm. In this algorithm, the trial value of the field is chosen independently of
the previous value. Let us call Wφ[φn] the Boltzmann factor e−S[φ] for a field
which is fixed everywhere except at the site n. We generate a new field value
at site n according to the probability distribution Wφ[φn]. This is equivalent to
performing infinitely many Metropolis steps at the same site n successively. The

†This renormalisation scheme corresponds to defining the renormalised coupling constant as
the four-point one-particle irreducible (OPI) Green’s function in tree approximation at momentum
zero.2, 4, 5
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new value of φn can be chosen in two ways: we can generate a trial value according
to some distribution ρ(φn) and accept this value with probability proportional
to Wφ[φn]/ρ(φn), or we can directly generate the new value with the required
probability Wφ[φn]. The Gaussian free field model will serve to illustrate the last
method.

Consider the action (15.44). If we vary φn , and keep all the remaining field
values fixed, we see that the minimum of the action occurs for φ̄n =�µφn+µ/(2d+
m2), where the sum is over all neighbouring points, i.e. for both positive and
negative directions. The Boltzmann factor Wφ[φn] as a function of φn for all
remaining field values fixed is then a Gaussian centred around φ̄n and with a width
1/
�

2d +m2. Therefore, we generate a Gaussian random number r with a variance
1, and then we set the new field value according to

φn = φ̄n + r /
�

2d +m2. (15.56)

An advantage of this method is that no trial steps have to be rejected, which
obviously improves the efficiency.

Unfortunately, this method is not feasible when a φ4 interaction is present as
we cannot generate random numbers with an exp(−x4) distribution. Therefore we
treat this term with an acceptance/rejection step as described above. This is done
as follows. First we generate a ‘provisional’ value of the field φn according with
a Gaussian distribution ρ(φn), according to the procedure just described. Then we
accept this new field value with a probability exp(−gφ4

n/2). If g is not too large
(and this will be the case in most of the examples given below), then the acceptance
rate will still be reasonably close to 1 and not too many trial steps are rejected. If
g is large, then a different procedure for generating the trial field value should be
followed.9

There is an intimate relation between the heat bath method described here and
the Gauss-Seidel method for finding the solution of the Poisson equation (see
Section A.7.2.2). In the Gauss-Seidel method, the sites are visited in lexicographic
order (the same can be done in the heat bath method), and φn is set equal to φ̄n

without adding a Gaussian random number to it. In Section A.7.2.2 the problem
of slow convergence of the numerical solution of the Poisson problem will be
addressed: it turns out that the relaxation time, measured in sweeps over the entire
lattice, scales as the square of the linear lattice size. The amount of computer time
involved in one lattice sweep scales also linearly with the lattice volume, so the
total time needed to obtain results within a certain level of accuracy scales with
the volume squared. Because of this power-law scaling behaviour of the standard
Poisson solvers, one might call this problem ‘critical’: the relaxation time scales
with the system size in a way similar to a system subject to critical fluctuations.
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The relation between Poisson solvers and free field theory leads us to apply clever
methods for solving Poisson’s equation to the problem of generating configurations
with a probability density exp(−S[φ]). In Appendix A, successive over-relaxation
(SOR), the use of fast Fourier transforms (FFT), and the multigrid method are
mentioned, and we shall see that all of these methods have their counterpart in
Monte Carlo.

Successive over-relaxation (SOR) is a method for increasing the efficiency of the
Gauss-Seidel method. The idea behind this method is that if we update the sites in
lexicographic order, half of the neighbours of the site being updated have already
been updated and the other half are still to be treated. In SOR, a compensation is
built in for the fact that half of the neighbouring sites have not yet been updated.
Site n is being updated according to

φnew
n =φold

n +ω(φ̄n −φold
n ). (15.57)

It can be shown that the optimal value for ω is close to 2: in that case the relaxation
time, which scales as L2 (measured in lattice sweeps) in the Gauss-Seidel method
is reduced to L (see Section A.7.2.2 and Ref. 10). Adler11 has shown that the
relaxation time for a Monte Carlo algorithm where a Gaussian random number is
added to φnew:

φnew
n →φnew

n +
�

ω(2−ω)r /
�

2d +m2, (15.58)

is equal to that of the corresponding Poisson solver algorithm, that is, the relaxation
time will now scale as L. We should obviously check that the SOR method still
satisfies detailed balance. This is left as an exercise, see problem 15.5.

The SOR method works well for models with quadratic interactions – including
a φ4 term renders the method less suitable, see however Ref. 12. Fortunately, the
physically more interesting gauge theories which will be discussed later in this
chapter are quadratic. A problem with this method is that the optimal value of the
over-relaxation parameter ω, which is 2 in the case of the scalar free field theory, is
not known in general and has to be determined empirically.

We have encountered the most straightforward methods for simulating the scalar
field theory. Most of these methods can easily be generalised to more complicated
field theories. Before discussing different methods, we shall analyse the behaviour
of the methods presented so far.

15.4.2 The MC algorithms: implementation and results

The implementation of the algorithms presented in the previous sections is
straightforward. The reader is encouraged to try coding a few and to check the
results given below.
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To obtain the renormalised mass and coupling constant, Eqs. (15.53) and (15.54)
can be used – however it is nice to measure the full two-point correlation function.
This can be found by sampling this function for pairs of points which lie in the
same column or in the same row. To obtain better statistics, nonhorizontal and
nonvertical pairs can be taken into account as well. To this end we construct a
histogram, corresponding to equidistant intervals of the pair separation. We keep
two arrays in the program, one for the value of the correlation function, and the
other for the average distance r corresponding to each histogram column. At
regular time intervals we perform a loop over all pairs of lattice sites. For each pair
we calculate the closest distance within the periodic boundary conditions according
to the minimum image convention. Suppose this distance is ri j . We calculate to
which column this value corresponds, and add the product of the field values at
the two sites φiφ j to the correlation function array. Furthermore we add ri j to
the average distance array. After completing the loop over the pairs, we divide the
values in the correlation function array and in the average distance array by the
number of pairs that contributed to these values. The final histogram must contain
the time averages of the correlation function values thus evaluated – this should be
written to a file.

We can now check whether the scalar φ4 theory is renormalisable. This means
that if we discretise the continuum field theory using finer and finer grids, the
resulting physics should remain unchanged. Equation (15.43) tells us how we
should change the various parameters of the theory when changing the grid
constant. We now present results for a field theory which on an 8× 8 lattice is
fixed by the parameter values m = 0.2 and g = 0.04. Note that both m and g

should be close to the critical line (which passes through m = 0, g = 0) to obtain
long correlation lengths justifying the discretisation. According to (15.43) we
use m = 0.1 and g = 0.01 on a 16 × 16 lattice, etc. The results are obtained
using a heat-bath algorithm using 30000 steps (8× 8) to 100000 steps (24× 24).
Figure 15.1 shows the correlation functions for various lattice sizes, obtained using
the heat-bath algorithm. The horizontal axis is scaled proportional to the lattice
constant (which is obviously twice as large for an 8×8 lattice as for a 16×16 lattice).
The vertical axis is scaled for each lattice size in order to obtain the best collapse
of the various curves. It is seen that for length scales beyond the lattice constant,
scaling is satisfied very well. Only on very small length scales do differences show
up, as is to be expected.

The correlation functions obtained from the simulations can be compared with
the analytic form, which can be obtained by Fourier transforming

Gk,−k = Z

4
�

µ sin
kµ

2
+m2

R

(15.59)



15.4. Algorithms for lattice field theories 513

g
(r

)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

8x8
12x12
16x16
24x24

r

Figure 15.1: The correlation function of the interacting scalar field theory for various lattice
sizes. The mass and coupling parameters for the different lattice sizes have been scaled such
as to keep the physical lattice size constant. The x-axis has been scaled accordingly. The
values have been determined using the histogram method described in the text.

[see Section 15.3 and Eq. (15.53)]. The parameter mR which gives the best match
to the correlation function obtained in the simulation (with an optimal value of the
parameter Z ), is then the renormalised mass. For each of the correlation functions
represented in Figure 15.1, parameters Z and mR can be found such that the
analytic form lies within the (rather small) error bars of the curves obtained from
the simulation. In table 15.1, the values of the renormalised mass as determined
using this procedure are compared with those obtained using (15.53). Excellent
agreement is found. It is seen that for the larger lattices, the renormalised mass
is more or less inversely proportional to the linear lattice size. The physical
mass however should be independent of the lattice size. This is because masses
are expressed in units of the inverse lattice constant, and the lattice constant is
obviously inversely proportional to the linear lattice size L if the lattice represents
the same physical volume for different sizes.

The determination of the renormalised coupling constant is difficult. We use
Eq. (15.54), but this is subject to large statistical errors. The reason is that the
result is the difference of two quantities which are nearly equal, and this difference
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Table 15.1: Values of the renormalised mass, obtained from (a) matching the measured
correlation function to the analytic form (15.59) and from (b) formula (15.53), for different
grid sizes.

L m g m(a)
R m(b)

R
8 0.2 0.04 0.374(5) 0.363(4)
12 0.1333 0.01778 0.265(5) 0.265(7)
16 0.1 0.01 0.205(7) 0.204(8)
24 0.06667 0.004444 0.138(4) 0.138(4)

Table 15.2: Values of the renormalised mass and coupling constant obtained from (15.53)
and (15.54), for different lattice sizes. Various methods (see later sections) are used.

L m g mR gR

8 0.05 0.1 0.456(3) 0.20(4)
12 0.03333 0.04444 0.332(3) 0.18(7)
16 0.025 0.025 0.260(3) 0.13(5)
24 0.016667 0.01111 0.184(2) 0.12(6)
32 0.0125 0.00625 0.1466(7) 0.10(4)

is subject to the (absolute) error of these two quantities – hence the relative error
of the difference becomes very large. The renormalised coupling constant should
not depend on the lattice size for large sizes, as it is dimensionless. Table 15.2
shows the results. The errors are rather large and it is difficult to check whether
the renormalised coupling constant remains the same indeed, although the data are
compatible with a coupling constant settling at a size-independent value of g ≈ 0.11

for large lattices.

15.4.3 Molecular dynamics

How can we use molecular dynamics for a field theory formulated on a lattice,
which has no intrinsic dynamics?† The point is that we assign a fictitious

momentum degree of freedom to the field at each site (the Car-Parrinello method
is based on a similar trick – see Chapter 9). As we have seen in Chapter 7 and 8,

†The dynamics is here defined in terms of the evolution of the field configuration and not in terms
of the time axis of the lattice.
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for a dynamical system the probability distribution of the coordinate part can be
obtained by integrating out the momentum degrees of freedom, and this should be
the desired distribution e−S[φ]. Therefore, we simply add a kinetic energy to the
action in order to obtain a classical Hamiltonian (which should not be confused
with the field theory’s quantum Hamiltonian):

Hclass =
�

n

p2
n

2
+S[φ]. (15.60)

Integrating out the momentum degrees of freedom of the classical partition
function, we obtain the Boltzmann factor of the action back again (up to a constant):

�

[Dpn] e−Hclass[pn ,φn ] =Const ·e−S[φ]. (15.61)

15.4.3.1 The Andersen method

The classical Hamiltonian gives rise to classical equations of motion which can
be solved numerically. These equations yield trajectories with constant energy (up
to numerical errors). We want, however, trajectories representing the canonical
ensemble, and in Chapter 8 we studied various methods for obtaining these. In
the Andersen refreshed molecular dynamics method, the momenta are refreshed
every now and then by replacing them with a new value drawn from a random
generator with a Maxwell distribution. In field theories, one often replaces all
momenta at the same time with regular intervals between these updates (the method
is usually denoted as the hybrid method). That is, first the equations of motion
are solved for a number of time steps, and then all momenta are replaced by new
values from the Maxwell random generator. Then the equations of motion are
solved again for a number of steps and so on.13–16 The exact dynamical trajectory
plus the momentum update can be considered as one step in a Markov chain whose
invariant distribution is the canonical one. We do not obtain the exact dynamical
trajectory, but a numerical approximation to it, and the errors made can be corrected
for in a procedure which will be discussed in the next section. In Chapter 8 we
mentioned that the Andersen method leads indeed to the canonical distribution of
the coordinate part. We shall prove this statement now.

First, it is useful to consider ‘symmetric’ Markov steps: these consist of an
integration of the equations of motion over a time Δt/2, then a momentum
refreshing, and then again an integration over a time Δt/2. Such a step can
schematically be represented as follows:

Φi,Pi
Δt/2−→Φm,Pm Refresh: Φm,Prm

Δt/2−→Φf,Pf.
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Energy conservation during the microcanonical trajectories implies

H (Φi,Pi) = H (Φm,Pm) ; (15.62a)

H (Φm,Prm) = H (Φf,Pf) . (15.62b)

The steps occur with a probability

T (Φi,Pi →Φf,Pf) = δ(Φf −Φmicrocanonical)exp
�

−P 2
rm/2

�

, (15.63)

where the delta-function indicates that Φf is uniquely determined by the
microcanonical trajectory, which depends of course on the initial configuration
Φi,Pi, the refreshed momentum Prm, and on the integration time (which is fixed).

The trial steps are ergodic, and the master equation of the Markov chain
�

Φ′,P ′
ρ(Φ,P )T (Φ,P →Φ

′,P ′) =
�

Φ′,P ′
ρ(Φ′,P ′)T (Φ′,P ′ →Φ,P ) (15.64)

will have an invariant solution. However, the detailed balance condition for this
chain is slightly modified. The reason is that we need to use the time-reversibility
of the microcanonical trajectories, but this reversibility can only be used when we
reverse the momenta. Therefore we have

ρ(Φ′,P ′)

ρ(Φ,P )
= T (Φ,P →Φ

′,P ′)

T (Φ′,−P ′ →Φ,−P )
(15.65)

[note that ρ(Φ,P ) = exp
�

−P 2/2−S(Φ)
�

is symmetric with respect to P ↔ −P].
The transition probability in the denominator of the right hand side corresponds
to the step in the numerator traversed backward in time (see the above diagram
of a symmetric trial step). The fraction on the right hand side is clearly equal
to exp

�

(P 2
mr −P 2

m)/2
�

. Using Eqs. (15.62), it then follows that the invariant
distribution is given as ρ(Φ,P ) = exp

�

−P 2/2−S(Φ)
�

.
The procedure can be implemented straightforwardly. The equations of motion

in the leap-frog form read

pn(t +h/2) = pn(t −h/2)+hFn(t ); (15.66a)

φn(t +h) =φn(t )+hpn(t +h/2), (15.66b)

where the force Fn(t ) is given by

Fn(t ) =
�

µ

�

φn+µ(t )
�

− (2d +m2)φn(t )−2gφ3
n(t ), (15.67)

where
�

µ denotes a sum over all neighbours. Refreshing the momenta should be
carried out with some care. We refresh the momenta at the time steps t for which
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the field values φn are evaluated in the leap-frog algorithm. However, we need the
momenta in the leap-frog algorithm at times precisely halfway between these times.
Therefore, after the momentum update, we must propagate the momenta over half
a time step h:

pn(t +h/2) = pn(t )+hFn(t )/2, (15.68)

and then the integration can proceed again.
This method contains a tunable parameter: the refresh rate. It turns out16 that the

efficiency has a broad optimum as a function of the refresh rate. Having around fifty
steps between the all-momenta updates with a time step h = 0.1 is quite efficient. If
we refresh after every time step, the system will essentially carry out a random walk
in phase space as the small steps made between two refreshings are nearly linear,
and the direction taken after each refreshment step is approximately random. If
we let the system follow its microcanonical trajectory for a longer time, it will
first go to a state which is relatively uncorrelated with respect to the previous one.
The momentum refreshings then ensure that the canonical distribution is satisfied;
however, the fact that the energy is not conserved, but may change by an amount (on
average) of O (h2) during the MD trajectory, causes deviations from the canonical
distribution of the same order of magnitude.

This method is obviously more efficient than refreshing after each step, as the
distance covered by a random walker increases only as the square root of the
number of steps made. If we wait too long between two refreshings, the simulation
samples only a few different energy surfaces which is not representative for the
canonical ensemble. The optimum refresh rate is therefore approximately equal to
the correlation time of the microcanonical system.

15.4.3.2 The Metropolis-improved MD method

The leap-frog algorithm introduces systematic errors into the numerical simulation,
and the distribution will therefore not sample to the exact one. That is not
necessarily a bad thing: we can always write the distribution which is sampled
by the MD trajectory as exp(−SD[φ]), where the action SD differs by some power
of h from the continuum action:17

SD[φ] = S[φ]+O (hk ) (15.69)

for some positive k. The discrete action may renormalise to a continuum limit
with slightly different parameters, but as the behaviour of the model is calibrated
in the end by matching calculated physical quantities to the experimental values,
our model with discrete time step might still describe the correct continuum limit.
Indeed, Batrouni et al.17 show that the discrete time action in the Langevin limit
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(i.e. the case in which the momenta are refreshed at every time step, see below) is a
viable one at least to first order in h. A problem is that the difference between the
discrete and the continuum actions makes it difficult to compare the results of the
MD simulation with an MC simulation of the same system with the same values of
the parameters.

The discretisation error can be corrected for in exactly the same way as is done
in the variational and diffusion quantum Monte Carlo method, see for example the
discussion near the end of Section 12.2.5. The idea is to consider the leap-frog
MD trajectories as a trial step in a Monte Carlo simulation. The energy before
and after this trial step is calculated, and the trial step is accepted with probability
exp(−H

new
class+H

old
class) (note that Hclass is a classical ‘energy’ which includes kinetic

and potential energy). If it is rejected, the momenta are refreshed once more and
the MD sequence starts again. This method combines the Andersen refreshment
steps with microcanonical trajectory acceptance/rejection steps. In the previous
subsection we saw that the refreshment step satisfies a modified detailed balance
condition which ensures the correct (canonical) distribution. Now we show that
the microcanonical trajectories plus the acceptance/rejection step, satisfy a similar
detailed balance with a canonical invariant distribution.

We write the transition probability in the form of a trial step probability
ωΦ,P ;Φ′,P ′ and a Metropolis acceptance/rejection probability AΦ,P ;Φ′,P ′ . The trial
step probability is determined by the numerical leap-frog trajectory and hence is
nonzero only for initial and final values compatible with the leap-frog trajectory.
Time-reversibility of the leap-frog algorithm implies that

ωΦ,P ;Φ′,P ′ =ωΦ′,−P ′;Φ,−P . (15.70)

The acceptance probability is given as usual by

AΦ,P ;Φ′,P ′ = min
�

1,exp
�

Hclass(Φ,P )−Hclass(Φ′,P ′)
��

. (15.71)

The acceptance step is invariant under P ↔−P as the momenta occur only with an
even power in the Hamiltonian.

From this, it follows immediately that the modified detailed balance condition
holds:

ρ(Φ′,P ′)

ρ(Φ,P )
=

ωΦ,P ;Φ′,P ′ AΦ,P ;Φ′,P ′

ωΦ′,−P ′;Φ,−P AΦ′,P ′;Φ,P
= exp

�

Hclass(Φ,P )−Hclass(Φ′,P ′)
�

. (15.72)

We see that without momentum refreshings, the canonical distribution is a
stationary distribution of the Markov process. However, for small time steps in
the leap-frog algorithm, the changes in the classical Hamiltonian are very small,
and convergence will be extremely slow. That is the reason why these steps are



15.4. Algorithms for lattice field theories 519

combined with momentum refreshings, which are compatible with a canonical
invariant distribution too, but which cause more drastic changes in the energy. This
method is usually called hybrid Monte Carlo method.18

The important advantage of this Metropolis-improved MD method is that
the time step of the leap-frog algorithm can be stretched considerably before
the acceptance rate of the Metropolis step drops too low. This causes the
correlation time for the ‘microcanonical’ part, measured in time steps, to be reduced
considerably. We have put the quotes around ‘microcanonical’ because the energy
is not conserved very well with a large time step. If the time step is taken too large,
the Verlet method becomes unstable (see Section A.7.1.3). In practice one often
chooses the time step such that the acceptance rate becomes about 80%, which is
on the safe side, but still not too far from this instability limit.

It should be noted that the acceptance rate depends on the difference in the
total energy of the system before and after the trial step. The total energy is an
extensive quantity: it scales linearly with the volume. This implies that discrete
time step errors will increase with volume. To see how strong this increase
is,19 we note that the error in coordinates and momenta after many steps in the
leap-frog/Verlet algorithm is of order h2 per degree of freedom (see problem A.3).
This is then the deviation in the energy over the microcanonical trajectory – we
shall denote this deviation ΔHMD. The energy differences obtained including the
acceptance/rejection step are called ΔHMC, that is, if the trajectory is accepted,
ΔHMC is equal to ΔHMD, but if the step is rejected, ΔHMC = 0. If ΔHMD averaged
over all possible initial configurations would vanish, the acceptance rate would
always be larger than 0.5, as we would have as many positive as negative energy
differences (assuming that the positive differences are on average not much smaller
or larger than the negative ones), and all steps with negative and some of the steps
with positive energy difference would be accepted. However, the net effect of the
acceptance/rejection step is to lower the energy, and since the energies measured
with this step included remain on average stationary, 〈ΔHMD〉 must be positive.
The fact that the energy remains stationary implies that 〈ΔHMC〉= 0 and this leads
to an equation for 〈ΔHMD〉:

〈ΔHMC〉= 0 =
�

{Φ,P } Pacc (ΔHMD)ΔHMD
�

{Φ,P }

. (15.73)

Using Pacc = min[1,exp(−ΔHMD)], and expanding the exponent, we find

0 = 〈ΔHMD〉−
�

θ(ΔHMD)(ΔHMD)2
�

(15.74)

where the theta-function restricts ΔHMD to be positive: θ(x) = 0 for x < 0 and 1
for x > 0. We see that 〈ΔHMD〉 is indeed positive and we furthermore conclude
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that 〈ΔHMD〉 = O (h4V ) for of the order of V degrees of freedom. For the average
acceptance value we then find

〈Pacc〉=
�

min
�

1,e−ΔHMD
��

≈ e−〈ΔHMD〉 = e−αh4V (15.75)

where α is of order one. Therefore, in order to keep the acceptance rate constant
when increasing the volume, we must decrease h according to V −1/4, which implies
a very favourable scaling.

15.4.3.3 The Langevin method

Refreshing the momenta after every MD step leads to a Langevin-type algorithm.
Langevin algorithms have been discussed in Section 8.8 and in Section 12.2.4. In
Section 8.8 we applied a Gaussian random force at each time step. In the present
case we assign Gaussian random values to the momenta at each time step as in
Section 12.2.4. In that case the two steps of the leap-frog algorithm can be merged
into one, leading to the algorithm:

φn(t +h) =φn(t )+ h2

2
Fn(t )+hRn(t ). (15.76)

The random numbers Rn are drawn from a Gaussian distribution with a width of
1 – it is a Gaussian momentum, not a force (hence the pre-factor h instead of
h2). Comparing the present approach with the Fokker-Planck equation discussed
in Section 12.2.4, we see that when we take ρ of the Fokker-Planck equation
(12.42) equal to exp(−S[φ]), Eq. (12.46) reduces to (15.76) if we put Δt = h2.
This then shows immediately that the Langevin algorithm guarantees sampling of
the configurations weighted according to the Boltzmann distribution.

An advantage of this algorithm is the memory saving resulting from the momenta
not being required in this algorithm but, as explained in the previous section, the
method is not very efficient because the system performs a random walk through
phase space. The reason why we treat this method as a separate one here is that
there exists an improved version of it which is quite efficient.17 We shall discuss
this algorithm in Section 15.5.5.

15.4.3.4 Implementation

All the MD algorithms described can be implemented without difficulty. The
details of the leap-frog and Langevin algorithm can be found in Chapter 8.
Moreover, calculation of the correlation function is described in Section 15.4.2.
The programs can all be tested using the results presented in that section.
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15.5 Reducing critical slowing down

As we have already seen in Section 7.3.2, systems close to the critical point suffer
from critical slowing down: this is the phenomenon that the correlation time τ

diverges as a power of the correlation length. This renders the calculation of the
critical properties very difficult, which is quite unfortunate as these properties are
usually of great interest: we have seen in this chapter that lattice field theories must
be close to a critical point in order to give a good description of the continuum
theory. In statistical mechanics, critical properties are studied very often to identify
the critical exponents for various universality classes.

For most systems and methods, the critical exponent z, defined by

τ= ξz , (15.77)

is close to 2. For Gaussian models, the value z = 2 of the critical exponent is related
to the convergence time of the simple Poisson solvers, which can indeed be shown
to be equal to 2 (see Section A.7.2.2). The value of 2 is related to the fact that the
vast majority of algorithms used for simulating field theories are local, in the sense
that only a small number (mostly one) of degrees of freedom is changed at a step.
For systems characterised by domain walls (e.g. the Ising model), the exponent 2
can be guessed by a crude heuristic argument. The major changes in the system
configuration take place at the domain walls, as it takes less energy to move a wall
than to create new domains. In one sweep, the sites neighbouring a domain wall
have on average been selected once. The domain wall will therefore move over a
distance 1. But its motion has a random walk nature. To change the configuration
substantially, the domain wall must move over a distance ξ, and for a random walk
this will take of the order of ξ2 steps.

Over the last ten years or so, several methods have been developed for reducing
the correlation time exponent z. Some of these methods are tailored for specific
classes of models, such as the Ising and other discrete spin models. All methods are
variations of either the Metropolis method, or of one of the MD methods discussed
in the previous section. In this section we shall analyse the different methods in
some detail. Some methods are more relevant to statistical mechanics, such as
those which are suitable exclusively for Potts models, of which the Ising model is a
special case, but we treat them in this chapter because the ideas behind the methods
developed for field theories and statistical mechanics are very similar.

As the local character of the standard algorithms seems to be responsible for
the critical slowing down present in the standard methods, the idea common to the
methods to be discussed is to update the stochastic variables in a global fashion,
that is, all in one step. How this is done can vary strongly from one method to the
other, but the underlying principle is the same for all of them.
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15.5.1 The Swendsen-Wang method

We start with the cluster method of Swendsen and Wang (SW)20 and explain their
method for the Ising model in d dimensions, discussed already in Section 7.2.2 and
10.3.1. The SW method is a Monte Carlo method in which the links, rather than
the sites, of the Ising lattice are scanned in lexicographic order. For each link there
are two possibilities:

1. The two spins connected by this link are opposite. In that case the interaction
between these spins is deleted.

2. The two spins connected by the link are equal. In that case we either delete the
bond or ‘freeze’ it, which means that the interaction is made infinitely strong.
Deletion occurs with probability pd = e−2βJ and freezing with probability pf =
1−pd.

This process continues until we have visited every link. In the end we are left with
a model in which all bonds are either deleted of ‘frozen’, that is, their interaction
strength is either 0 or ∞. This means that the lattice is split up in a set of disjoint
clusters and within each cluster the spins are all equal. This model is simulated
trivially by assigning at random a new spin value + or − to each cluster. Then the
original Ising bonds are restored and the process starts again, and so on.

Of course we must show that the method does indeed satisfy the detailed balance
condition. Before doing so, we note that the method leads indeed to a reduction
of the dynamic critical exponent z of the two-dimensional Ising model to the value
0.35 presented by SW,† which is obviously an important improvement with respect
to the value z = 2.125 for the standard MC algorithm. The reason why the method
works is that flipping blocks involves flipping many spins in one step. In fact, the
Ising (or more generally, the Potts model) can be mapped on a cluster model, where
the distribution of clusters is the same as for the SW clusters.22 The average linear
cluster size is proportional to the correlation length, and this will diverge at the
phase transition. Therefore, the closer we are to the critical point, the larger the
clusters are and the efficiency will increase accordingly.

In the Swendsen-Wang method, any configuration can be reached from any other
configuration, because there is a finite probability that the lattice is partitioned into
Ld single-spin clusters which are then given values + and − at random. Furthermore
it is clear that the method does not generate periodicities in time and it remains to be
shown that the SW method satisfies detailed balance. We do this by induction. We
show that the freezing/deleting process for some arbitrary bond does not destroy

†From a careful analysis, Wolff21 has found exponents z = 0.2 and z = 0.27 for the 2D Ising
model, depending on the physical quantity considered.
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detailed balance, so carrying out this process for every bond in succession does not
do so either.

Every time we delete or freeze a particular bond i j we change the Hamiltonian
of the system:

H → H0 +Vi j , (15.78)

H is the Hamiltonian in which the bond is purely Ising-like. H0 is the Hamiltonian
without the interaction of the bond i j and Vi j represents an interaction between the
spins at i and j which is either ∞ (in the case of freezing) or 0 (if the bond has
been deleted) – the remaining bonds do not change. We write the detailed balance
condition for two arbitrary configurations S and S′ for the system with Hamiltonian
H as follows:

T (S → S′)

T (S′ → S)
= e−β[H(S′)−H(S)] = T0(S → S′)

T0(S′ → S)
e
−βJ (s′

i
s′

j
−si s j )

, (15.79)

where T0 is the transition probability for the Hamiltonian H0 and we have explicitly
split off the contribution from the bond i j . In the last equality we have used the
detailed balance condition for the system with Hamiltonian H0.

In the SW algorithm, we must decide for a bond i j whether we delete or freeze
this bond. The transition probability of the system after this step can be written as

T (S → S′) = Tf(S → S′)Pf(S)+Td(S → S′)Pd(S). (15.80)

Here, Pd,f(S) is the probability that we delete (d) or freeze (f) the bond i j in spin
configuration S. Td(S → S′) is the transition probability with a deleted bond, and
therefore Td = T0, and Tf is the transition probability when the bond is frozen. The
latter is equal to T0 in the case that the spins si , s j are equal in both S and S′ and it
is zero in the case that they are unequal in S′ (they must be equal in S, otherwise
they could not have been frozen).

Let us consider the detailed balance condition for the transition probability in
(15.80):

T (S → S′)

T (S′ → S)
= Tf(S → S′)Pf(S)+Td(S → S′)Pd(S)

Tf(S′ → S)Pf(S′)+Td(S′ → S)Pd(S′)
= e−β[H(S′)−H(S)]. (15.81)

We show that this condition is indeed satisfied, using (15.79). Let us assume that
si and s j are equal in both S and S′. In that case Pf(S) = 1−exp(−2βJ ) and Pd =
exp(−2βJ ) respectively and we have

T (S → S′)

T (S′ → S)
=

Tf(S → S′)
�

1−exp(−2βJ )
�

+T0(S → S′)exp(−2βJ )

Tf(S′ → S)
�

1−exp(−2βJ )
�

+T0(S′ → S)exp(−2βJ )
. (15.82)
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Since the pair si s j is equal in both S and S′, the transition probability Tf = T0 and
we see that (15.79) holds indeed for the transition probability after the SW step.

If before and after the step the spins si and s j are unequal, Tf vanishes in both
numerator and denominator, and it is clear that (15.79) holds in this case too.
Suppose si = s j in S and that the corresponding pair s′

i
, s′

j
in S′ is unequal. In

that case we have

T (S → S′)

T (S′ → S)
=

Tf(S → S′)
�

1−exp(−2βJ )
�

+T0(S → S′)exp(−2βJ )

T0(S′ → S)
. (15.83)

The denominator in the right hand side contains only the term with a deleted bond
because starting from the configuration S′ in which s′

i
and s′

j
are unequal, we

can only delete the bond. The transition probability Tf(S → S′) occurring in the
numerator obviously vanishes, and we see that also for this case detailed balance,
Eq. (15.79), is again satisfied.

It is instructive to code the Swendsen-Wang method. First a sweep through the
lattice is performed in which all the bonds are either frozen or deleted. This poses
no difficulties. Then the clusters must be identified. This can be done using ‘back-
tracking’ and is most conveniently coded recursively. It works as follows. A routine
BackTrack(x, y) is written, which scans the cluster containing the site given by the
Cartesian (integer) components (x, y). Start at site (x, y) and check whether this site
has already been visited. If this is not the case, leave a flag there as a mark that the
cluster site has now been visted, and scan the neighbouring sites in a similar way
by recursive calls. The resulting routine looks more or less as follows (for d = 2):

ROUTINE BackTrack(x, y)

IF NOT Visited (x,y) THEN
Mark (x, y) as being visited;
IF (Frozen(x, y, x +1, y)) THEN

BackTrack(x +1, y);
IF (Frozen(x, y, x, y +1)) THEN

BackTrack(x, y +1);
IF (Frozen(x, y, x −1, y)) THEN

BackTrack(x −1, y);
IF (Frozen(x, y, x, y −1)) THEN

BackTrack(x, y −1);
END IF

END BackTrack.

Frozen(x1, y1, x2, y2) is a boolean function which returns TRUE if the nearest
neighbour bond between (x1, y1) and (x2, y2) is frozen and FALSE otherwise.
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Periodic boundaries should be implemented using a modulo operator or function,
and it is convenient to decide before scanning the cluster whether it is going to be
flipped and, if yes, to do so during the recursive scanning (alongside putting the
Visited flag). On exit, the cluster is scanned and all its sites marked as visited. In a
sweep through all values i and j , all clusters will be found in this way and it is to
be noted that the computer time needed to scan a cluster in the backtrack algorithm
scales linearly with the cluster volume (area).

Another algorithm for detecting all the clusters in the system is that of Hoshen
and Kopelman. This algorithm does not use recursion. It scales linearly with the
lattice size and it is more efficient than back-tracking (30–50%) but it is somewhat
more difficult to code. Details can be found in the literature.23

The time scaling exponent z can be determined from the simulations. Note
that the time correlation of the magnetisation is useless for this purpose as the
clusters are set to arbitrary spin values after each sweep, so that the magnetisation
correlation time is always of order 1. Therefore, we consider the time correlation
function of the (unsubtracted) susceptibility per site. This is defined as

χ= 1

L2d

��

�

i

si

�2�

. (15.84)

Its time correlation function is

Cχ(k) =
�N

n=1χn+kχn
�N

n=1χ
2
n

(15.85)

where the indices n and k are ‘time’ indices, measured in MC steps per spin.
The susceptibility can be determined directly from the lattice configuration after

each step using (15.84), but it is possible to obtain a better estimate by realising
that when the system is divided up into clusters c of area Nc , the average value of
χ is given by

χ= 1

L2d

��

�

c

Nc sc

�2�

(15.86)

where sc is the spin value of cluster c. We can write this as

χ= 1

L2d

�

�

c

Nc sc

�

c ′
Nc ′ sc ′

�

, (15.87)

and by summing over sc =±1 for all the clusters we obtain the average of this value
for all possible cluster-spin configurations. Then only the terms c = c ′ survive and
we are left with

χ= 1

L2d

�

�

c

N 2
c

�

. (15.88)
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This is the so-called ‘improved estimator’ for the unsubtracted susceptibility.24, 25

This estimator gives better results because the average over all possible cluster-spin
configurations is built into it.

The correlation time can be determined from the values of χ at the subsequent
MC steps in the usual way (see Section 7.4). For a detailed analysis of the dynamic
exponent for various cases, see Ref. 21.

– Programming exercise –

Code the SW algorithm for the two-dimensional Ising model. Determine the time
relaxation exponent and compare this with the value found for the single-spin flip
algorithm.

Wolff24 has carried out the cluster algorithm in the microcanonical ensemble,
using a microcanical MC method proposed by Creutz.26 He fixed the number
of unequal bonds to half the number of total bonds and found considerable
improvement in the efficiency.

15.5.2 Wolff’s single cluster algorithm

Wolff27 has proposed a different cluster method for eliminating critical slowing
down for Potts spin systems, and an extension of this method and the SW method
to a special class of continuous spin models. We start with Wolff’s modification of
the SW method for the Ising model. In Wolff’s method, at each step a single cluster
is generated as opposed to the SW model, in which the entire lattice is partitioned
into clusters. The single cluster is constructed according to the same rules as the
SW clusters. We start with a randomly chosen spin and consider its neighbours.
Only equal neighbours can be linked to the cluster by freezing the bonds between
them – this happens with probability 1−e−2βJ . The cluster is extended in this way
until no more spins are added to it. Then all the spins in the cluster are flipped.

It will be clear that the cluster generated in this way is a SW cluster and therefore
the method satisfies detailed balance. The difference between the two methods
is that the selection of the cluster to be grown can be viewed as throwing a dart
at the lattice21 with equal probability to hit any of the sites – the probability of
hitting a SW cluster (SWC) of size NSWC is NSWC/Ld (for d dimensions), thereby
favouring large clusters to be grown. Because of this preference for large clusters it
is expected that the single cluster version changes the configuration on average
more drastically in the same amount of time and that statistically independent
configurations are generated in fewer steps. This turns out to be the case in the 3D
Ising model, where the single cluster algorithm yields time correlation exponents
0.28 or 0.14 (depending on the correlation function studied) as opposed to 0.5 for
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the SW algorithm – for the 2D Ising model only a small increase in efficiency has
been measured.21

It is convenient to generate the clusters in a recursive way. Each MC step consists
of selecting a random site (Location) on the lattice – ClusterSpin is minus the spin
at this location (the spins are flipped when added to the cluster). The algorithm is
then as follows:

ROUTINE GrowCluster(Location, ClusterSpin):
Flip Spin at Location;
Mark Spin as being added to Cluster;
IF right-hand neighbour not yet added THEN

TryAdd(RightNeighbour, ClusterSpin);
...Similar for other neighbours...

END GrowCluster.

ROUTINE TryAdd (Location, ClusterSpin):
Determine Spin at Location;
IF Spin opposite to ClusterSpin THEN

IF Random number < 1−e−2J THEN
GrowCluster(Location, ClusterSpin);

END IF;
END IF;

END TryAdd.

Measuring correlation times requires some care, as a step in the Wolff algorithm
consists of flipping one cluster instead of (on average) half of the total number of
spins in the lattice as in the SW algorithm. The correlation time τ̄W expressed in
numbers of single cluster flips must therefore be translated into the single cluster
correlation time τW expressed in SW time steps:

τW = τ̄W
〈N1C〉

Ld
. (15.89)

The average single cluster size 〈N1C〉 occurring in the right hand side is the
improved estimator for the (unsubtracted) susceptibility per site:

〈N1C〉=
�

NSWC

Ld
NSWC

�

=χ. (15.90)

This formula can be understood by realising that the probability of generating a
SW cluster of size NSWC in the single cluster algorithm is equal to NSWC/Ld . To
evaluate the average cluster size we must multiply this probability with NSWC and
take the expectation value of the result.
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– Programming exercise –

Implement Wolff’s single cluster algorithm and compare the results with the SW
algorithm – see also Ref. 21.

In many statistical spin systems and lattice field theories, the spins are not
discrete but they assume continuous values. Wolff’s algorithm was formulated
for a particular class of such models, the O(N ) models. These models consist of
spins, which are N -dimensional unit vectors, on a lattice. Neighbouring spins si ,s j

interact – the interaction is proportional to the scalar product si · s j . An example
which is relevant to many experimental systems (superfluid and superconducting
materials, arrays of coupled Josephson junctions . . . ) is the O(2), or X Y -model, in
which the spins are unit vectors si lying in a plane, so that they can be characterised
by their angle θi with the x-axis, 0 ≤ θi < 2π.

For simulations, it is important that relevant excitations in O(N ) models are
smooth variations of the spin orientation over the lattice (except near isolated
points – see below). This implies that changing the value of a single angle θi

somewhere in the lattice by an amount of order 1 is likely to lead to an improbable
configuration – hence the acceptance rate for such a trial change is on average
very small. The only way of achieving reasonable acceptance rates for changing
a single spin is by restricting the variation in the orientation of the spin allowed
in a trial step considerably. This however will reduce the efficiency because many
MC steps are then needed to arrive at statistically independent configurations. A
straightforward generalisation of the SW or single cluster algorithm in which all
spins in some cluster are reversed is bound to fail for the same reason, as this
destroys the smoothness of the variation of the spins at the cluster boundary.

Wolff27 has proposed a method in which the spins in a cluster are modified to an
extent depending on their orientation. It turns out that his method can be formulated
as an embedding of an Ising model into an O(N ) model.28 First a random unit
vector u is chosen. Every spin si is then split into two components: the component
along u and that perpendicular to u:

s
∥
i
= (si ·u)u (15.91a)

s⊥i = si −s
∥
i
. (15.91b)

We keep s⊥
i

and |s∥
i
| fixed – the only freedom left for the O(N ) spins is to flip their

parallel component:
si = s⊥i + ǫi |s∥i |u, ǫi=±1. (15.92)

A flip in the sign ǫi corresponds to a reflection with respect to the hyperplane
perpendicular to u (see Figure 15.2). The interaction of the model with the
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restriction on the fluctuations that only flips of the parallel components are allowed,
can now be described entirely in terms of the ǫi :

H [ǫi ] =
�

〈i j〉
Ji j ǫi ǫ j (15.93a)

Ji j = J |s∥
i
| |s∥

j
|. (15.93b)

This Ising Hamiltonian is now simulated using the single cluster or the SW
algorithm. After choosing the unit vector u, we calculate the ǫi for the actual
orientations of the spins and then we allow for reflections of the si (that is, for spin
flips in the ǫi system).

This method is more efficient than the standard single-spin update method
because large clusters of spins are flipped at the same time. But why is the
acceptance rate for such a cluster update not exceedingly small? The point is that
the amount by which a spin changes, depends on its orientation (see Figure 15.2):
for a spin more or less perpendicular to u, the change in orientation is small.
This translates itself into the coupling Ji j being small for spins si , s j nearly

uu
s

s’

s

s’

Figure 15.2: Spin flips in the Wolff algorithm for the O(3) model.

perpendicular to u. For spins parallel to u, the coupling constant Ji j is large
and these spins will almost certainly be frozen to the same cluster. The cluster
boundaries will be the curves [in two dimensions, and (hyper)surfaces in higher
dimensions] on which the spins si are more or less perpendicular to u. In other
words, if we provide a direction u, the algorithm will find an appropriate cluster
boundary such that the spin reflection does not require a vast amount of energy.
Therefore, the acceptance rate is still appreciable.

The procedure is ergodic as every unit vector u can in principle be chosen and
there is a finite probability that the cluster which is to be swapped consists of
a single spin – the isolated spin-update method is therefore included in the new
algorithm. Detailed balance is satisfied because the new Ising Hamiltonian (15.93)
is exactly equivalent to the original O(N ) Hamiltonian under the restriction that
only the reflection steps described are allowed in the latter.
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The implementation of the method for the two-dimensional X Y model proceeds
along the same lines as described above for the Ising model. Apart from selecting
a random location from which the cluster will be grown, a unit vector u must
be chosen, simply by specifying its angle with the X -axis. Each spin is flipped
when added to the cluster. If we try to add a new spin si to the cluster (in routine
‘TryAdd’), we need the spin value of its neighbour s j in the cluster – the freezing
probability Pf is then calculated as

Pf = 1−min
�

1,exp[βsi · (s j −s′j )]
�

= 1−min
�

1,exp[2βsi ·s j ]
�

(15.94)

(note that the cluster spin si has already been flipped, in contrast to s j ). The spin
s j is then added to the cluster with this freezing probability. Instead of considering
continuous angles between 0 and 2π, it is possible to consider an n-state clock

model, which is an X Y model with the restriction that the angles allowed for the
spins assume the values 2 jπ/n, j = 0, . . . ,n −1;29 see also Section 12.6. At normal
accuracies, the discretisation of the angles will not be noticed for n greater than
about 20. The cosines and sines needed in the program will then assume n different
values only and these can be calculated in the beginning of the program and stored
in an array.

– Programming exercise –

Write a Monte Carlo simulation program for the X Y model, using Wolff’s cluster
algorithm. If the program works correctly, it should be possible to detect the
occurrence of the so-called Kosterlitz-Thouless phase transition (note that this
occurs only in two dimensions). This is a transition which has been observed
experimentally in helium-4 films30 and Josephson junction arrays.31 We shall
briefly describe the behaviour of the X Y model.

Apart from excitations which are smooth throughout the lattice – spin-waves –
the X Y model exhibits so-called vortex excitations. A pair of vortices is shown in
Figure 15.3. The vortices can be assigned a vorticity which is roughly the ‘winding’
number of the spins along a closed path around the vortex – the vorticity assumes
values 2π,−2π (for higher temperatures also 4π etc. can occur). An isolated vortex
requires an amount of energy which scales logarithmically with the lattice size and
is hence impossible in a large lattice at finite temperature. However, vortex pairs
of opposite vorticity are possible; their energy depends on the distance between
the vortices and is equal to the Coulomb interaction (which is proportional to
lnR for two dimensions) for separations R larger than the lattice constant. The
system can only contain equal numbers of positive and negative vortices. At low
temperatures the vortices occur in bound pairs of opposite vorticity (to be compared
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Figure 15.3: A pair of vortices, one with positive and one with negative vorticity.

with electrical dipoles), and the spin-waves dominate the behaviour of the model in
this phase. It turns out that the correlations are long-ranged:

�

θi −θ j

�

∼ 1

|ri − r j |xT
, (15.95)

for large separation |ri − r j |, with a critical exponent xT which varies with
temperature. At the KT transition, the dipole pairs unbind and beyond the transition
temperature TKT we have a fluid of freely moving vortices (to be compared with a
plasma).

Imagine you have an X Y lattice with fixed boundary conditions: the spins have
orientation θ = 0 on the left hand side of the lattice and you have a handle which
enables you to set the fixed value δ of the spin orientation of the rightmost column
of X Y -spins. Turning the handle from δ = 0 at low temperatures, you will feel a
resistance as if it is attached to a spring. This is due to a nonvanishing amount of
free energy which is needed to change the orientation of the spins on the right hand
column. This excess free energy scales as

ΔF ∼ Γδ2 (15.96)

for small angles δ. At the KT temperature the force needed to pull the handle
drops to zero, as the vortex system has melted, which is noticeable through the
proportionality constant Γ dropping to zero.
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The quantity Γ is called spin-wave stiffness32 or helicity modulus. It can be
calculated in a system with periodic boundary conditions using the following
formula:32

Γ= J

2L2

��

�

〈i j〉
cos(θi −θ j )

�

− J

kBT

��

�

i

sin(θi −θi+êx
)

�2�

− J

kBT

��

�

i

sin(θi −θi+ê y
)

�2��

. (15.97)

From the Kosterlitz-Thouless theory29, 33, 34 it follows that the helicity modulus
has a universal value Γ = 2kBTKT/π at the KT transition. The drop to zero is
smooth for finite lattices but it becomes steeper and steeper with increasing lattice
size. Figure 15.4 shows Γ/J as a function of kBT /J . The line Γ/J = 2(kBT /J )/π

is also shown and it is seen that the intersection of the helicity modulus curve with
this line gives the value from which the helicity modulus drops to zero. You can
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Figure 15.4: The helicity modulus in units of the coupling constant J of the X Y model
vs. the inverse coupling constant in units of kBT . The intersection of the helicity modulus
curves with the straight line gives the value from which the helicity modulus starts dropping
to zero.

check your program by reproducing this graph.
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Edwards and Sokal28 have found that for the X Y model the dynamic critical
exponent in the low-temperature phase is zero or almost zero.

15.5.3 Geometric cluster algorithms

The cluster algorithms described so far flips or rotates spins on a lattice. In fact,
Wolff’s version of the algorithm for the X Y model boils down to flipping an Ising
spin. Cluster algorithms strongly rely on a reflection symmetry of the Hamiltonian:
flipping all spins does not affect the Hamiltonian. This is the reason why a simple
distinction can be made for pairs which may be frozen and those which certainly
will not. The same holds for the q-state Potts model: there we have a symmetry
under permutation of all spin values. Another way of looking at this is that flipping
a large cluster in an Ising model with a magnetic field, yields an energy loss or gain
proportional to the volume (surface in two dimensions), which leads to very low
acceptance rates in phases with a majority spin. Hence cluster algorithms will be
less efficient for such systems.

If we switch on a magnetic field, the spin-flip symmetry is broken and the cluster
algorithm can no longer be used. Another problem is that it is not immediately
clear whether and how cluster ideas may be generalised to systems which are
not formulated on a lattice. A step towards a solution was made by Dress and
Krauth,35 who used geometric symmetries to formulate a cluster algorithm for
particles moving in a continuum. Usually, a reflection of the particles with respect
to a point chosen randomly in the system is used. The interaction between these
particles is considered to be a hard-core interaction, but long(er) ranged interaction
may also be present. The problem with the algorithm is that the decision to displace
a particle is made based on the hard-core part. Other interactions are included in the
acceptance criterion, and this leads to many rejections. This problem was solved by
Liu and Luijten36 who take all interactions into account. They start with identifying
a random reflection point and then choose an initial particle at random. This and
other particles having non-negligible interaction with the first particles, are then
candidates to be reflected. This is done one by one, taking all interactions into
account, and each time a reflection of a particle would result in a decrease Δ of the
energy, the particle is reflected with probability exp(−|Δ|) – if the energy increases,
the particle is note reflected. This algorithm promises to be valuable for the analysis
of dense liquids.

The geometric cluster idea has also been used for spin systems formulated on
a lattice.37 Again, a reflection site is identified at random. Then, for a randomly
chosen site i , the spin is exchanged with that of its reflection partner i ′. Then each
neighbour k of i is investigated. If exchanging the spins at k and k ′ results in an
energy gain Δ, (that is, the total energy decreases), then the move is accepted with
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exp(−Δ); if this is note the case, k is left unaltered. Then the algorithm proceeds
with the neighbours of k just as in Wolff’s cluster algorithm. We see that spins are
only exchanged in this algorithm, so that the total spin remains constant: the energy
change no longer scales with the cluster volume.

15.5.4 The multigrid Monte Carlo method

The multigrid Monte Carlo (MGMC) method,9, 38, 39 is yet another way of reducing
critical slowing down near the critical point. This method is closely related
to the multigrid method for solving partial differential equations described in
Section A.7.2.5 and readers not familiar with this method should go through that
section first – see also problem A.7.

Multigrid ideas can be used to devise a new Monte Carlo algorithm which
reduces critical slowing down by moving to coarser and coarser grids and updating
these in an MC procedure with a restricted form of the Hamiltonian.

To be specific, let us start from a grid at level l ; a field configuration on this
grid is called ψ. The Hamiltonian on this grid is called Hl [ψ]. The coarse grid
is the grid at level l −1, and configurations on this coarse grid are denoted by φ.
Now consider the prolongation operation Pl ,l−1 described in Section A.7.2.5, which
maps a configuration φ on the coarse grid to a configuration ψ on the fine grid by
copying the value of φ on the coarse grid to its four nearest neighbours on the fine
grid:

Pl ,l−1 : φ→ψ; (15.98a)

ψ(2i +µ,2 j +ν) =φ(i , j ), (15.98b)

where µ and ν are ±1. We consider now a restricted Hamiltonian Hl−1[δφ],
which is a function of the coarse grid configuration δφ, depending on the fine grid
configuration ψ which is kept fixed:

Hl−1[δφ] = Hl [ψ+Pl ,l−1(δφ)]. (15.99)

We perform a few MC iterations on this restricted Hamiltonian and then we go to
the coarser grid at level l −2. This process is continued until the lattice consists of
a single site, and then we go back by copying the fields on the coarser grid sites to
the neighbouring sites of the finer grids, after which we perform again a few MC
steps, and so on.

The algorithm reads, in recursive form:

ROUTINE MultiGridMC(l , ψ Hl )
Perform a few MC sweeps: ψ→ψ′;
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IF (l >0) THEN
Calculate the form of the Hamiltonian

on the coarse grid: Hl−1[δφ] = Hl [ψ′+Pl ,l−1(δφ)];
Set δφ equal zero;
MultiGridMC(l −1, δφ, Hl−1);

ENDIF;
ψ′′ = ψ′+Pl ,l−1δφ;
Perform a few MC sweeps: ψ′′ →ψ′′′;

END MultiGridMC.

The close relation to the multigrid algorithm for solving Poisson’s equation, given
in Section A.7.2.5 is obvious.

The MC sweeps consist of a few Metropolis or heat bath iterations on the fine grid
field ψ. This step is ergodic as the heat bath and Metropolis update is ergodic. Note
that the coarse grid update in itself is not ergodic because of the restriction imposed
on fine grid changes (equal changes for groups of four spins) – the Metropolis or
heat bath updates are essential for this property.

We should also check that the algorithm satisfies detailed balance. Again, the
Metropolis or heat bath sweeps respect detailed balance. The detailed balance
requirement for the coarse grid update is checked recursively. A full MCMG step
satisfies detailed balance if the coarse grid update satisfies detailed balance. But
the coarse grid update satisfies detailed balance if the coarser grid update satisfies
detailed balance. This argument is repeated until we reach the coarsest level (l = 1).
But at this level we perform only a few MC sweeps, which certainly satisfy detailed
balance. Therefore, the full algorithm satisfies detailed balance.

There is one step which needs to be worked out for each particular field theory:
constructing the coarse Hamiltonian Hl−1 from the fine one, Hl . We do not know
a priori whether new interactions, not present in the fine Hamiltonian, will be
generated when constructing the coarse one. This often turns out to be the case.
As an example, consider the scalar interacting φ4 field theory. The terms φ2 and
φ4 generate linear and third powers in φ when going to the coarser grid. Moreover,
the Gaussian coupling (φn −φn+µ)2 generates a term φn −φn+µ. Therefore, the
Hamiltonians which we must consider have the form:

H [ψ] = 1

2

�

�

〈nn′〉

�

Jn,n′(ψn −ψn′)2 +
�

µ
Kn,n′(ψn −ψn′)

�

+

�

n

�

Lnψn +Mnψ
2 +Tnψ

3
n +Gnψ

4
n

�

�

. (15.100)

Restricting this Hamiltonian to a coarser grid leads to new values for the coupling
constants.
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Figure 15.5: Two neighbouring blocks on a fine lattice with coarse lattice sites N and N ′.

We denote the sites of the new grid by N , N ′. Furthermore,
�

nn′|N N ′ denotes a
sum over sets n,n′ of neighbouring points, which belong to different neighbouring
blocks of four sites belonging to N and N ′ respectively as in Figure 15.5. Finally,
�

n|N denotes a sum over the fine grid sites n belonging to the block N . With this
notation, the new coupling constants on the coarse grid can be written in terms of
those on the fine grid:

JN N ′ =
�

nn′|N N ′
Jnn′ ; KN N ′ =

�

nn′|N N ′

�

Knn′ +2Jnn′
�

ψn −ψn′
��

;

LN =
�

n|N

�

Ln +2Mnψn +3Tnψ
2
n +4Gnψ

3
n

�

; (15.101)

MN =
�

n|N

�

Mn +3Tnψn +6Gnψ
2
n

�

;

TN =
�

n|N
(Tn+ 4Gnψn

�

; GN =
�

n|N
Gn .

With this transformation, the MCMG method can be implemented straightfor-
wardly. It can be shown that critical slowing down is completely eliminated for
Gaussian type actions, so it will work very well for the φ4 theory close to the
Gaussian fixed point. However, the φ4 theory has more than one critical point
in two dimensions. One of these points has Ising character: for this point, the
coefficient of the quadratic term is negative, whereas the coefficient g of φ4 is
positive. This means that the field has two opposite minima. For this model, the
MCMG method does not perform very well. This can be explained using a heuristic
argument. Suppose the field assumes values very close to +1 or −1. Consider a
block of four spins on the fine lattice which belong to the same coarse lattice site.
Adding a nonzero amount, φN , to these four spins will only be accepted if they are
either all equal to −1, so that an amount of 2 can be added, or if they are all equal
to +1 so that we can subtract 2 from each of them. The probability that all spins in
a block have equal values becomes smaller and smaller when coarsening the lattice
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more and more, so the efficiency of the MCMG method is degraded severely for
this case. However, it turns out to be still more efficient by a factor of about 10 with
respect to the standard heat bath method.

15.5.5 The Fourier-accelerated Langevin method

We have encountered the Langevin method for field theories in Section 15.4.3.3.
This method suffered from slow convergence as a result of small, essentially
random, steps being taken, causing the system to perform a random walk in
phase space. In 1985, Batrouni et al.17 proposed a more efficient version of the
Langevin method in which the fields are updated globally. This is done by Fourier
transforming the field, and then applying the Langevin method to the Fourier
modes, rather than to the local fields. That this is a valid approach can be seen
as follows. We have seen that MD methods can be applied to fields after assigning
fictitious momenta to the field variables. In the MD method we have assigned a
momentum pn to each field variable φn . It is, however, perfectly possible to assign
the momenta not to each individual field variable, but to linear combinations of the
field variables. After integrating out the momenta we shall again find a Boltzmann
distribution of the field variables.

In addition we have the freedom to assign a different time step to each linear
combination of field variables. As we have seen in Section 9.3.2, this is equivalent
to changing the mass associated with that variable, but we shall take the masses all
equal to 1, and vary the time step.

In the Fourier-accelerated Langevin method, we assign momenta pk to each
Fourier component φk of the field. Furthermore, we choose a time step hk for
each k individually. To be specific, we write the action S in terms of Fourier
transformed fields, and construct the following classical Hamiltonian expressed in
terms of Fourier modes:

HClass =
�

k

�

p2
k

2
+S[φk ]

�

. (15.102)

By integrating out the momenta it is clear that an MD simulation at constant
temperature for this Hamiltonian leads to the correct Boltzmann distribution of the
field. In the Langevin leap-frog form, the equation of motion reads

φk (t +hk ) =φk (t )−
h2

k

2

∂S[φk (t )]

∂φk
+hk Rk , (15.103)

where Rk is the Fourier transform of a Gaussian random number with a variance of
1 (see below). Fourier transforms are obviously carried out using the fast Fourier
transform (see Section A.9).
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For a free field model, the dynamical system described by the Hamiltonian
(15.102) can be solved trivially, as the Hamiltonian does not contain couplings
between the different k’s. In that case the action can be written as

S[φk ] = 1

2L2d
φk Kk,−kφ−k . (15.104)

Kk,k ′ is the free field propagator given in (15.49). The Hamiltonian describes a set
of uncoupled harmonic oscillators with periods Tk = 2π/

�

Kk,−k . The algorithm
will be unstable when one of the time steps hk becomes too large with respect to
Tk (see Section A.7.1.3). The most efficient choice for the time steps is therefore

hk =αTk =α
2π

�

4
�

µ sin2 kµ

2
+m2

, (15.105)

where α is some given, small fraction, e.g. α = 0.2. If we take all the hk smaller
than the smallest period, then the slower modes would evolve at a much smaller
rate than the fast modes. By adopting convention (15.105), the slow modes evolve
at exactly the same rate as the fast ones. Therefore, critical slowing down will
be completely eliminated for the free field model. For the interacting field with
a φ4 term present, the time steps are taken according to (15.105), but with the
renormalised mass occuring in the denominator.17

A remark is in place here. As the method uses finite time steps, it is not the
continuum action which is simulated, but the discrete version which deviates to
some order of the time steps from the continuum one. Therefore, comparisons with
MC or hybrid algorithms are not straightforward. The time steps chosen here are
such that the time step error is divided homogeneously over the different modes.

The algorithm for a step in the Fourier-accelerated Langevin method is as
follows:

ROUTINE LangStep(ψ)
Calculate forces Fn in real space;
FFT: Fn → Fk ;
FFT: φn →φk ;
Generate random forces Rk ;
Update φk using (15.103) with time steps (15.105);
FFT: φk →φn;

END LangStep.

We have used ‘FFT’ for the forward transform (from real space to reciprocal space)
and ‘FFT’ for the backward transform. The random forces Rk can be generated in
two ways. The simplest way is to generate a set of random forces Rn on the real
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space grid, and then Fourier transforming this set to the reciprocal grid. A more
efficient way is to generate the forces directly on the Fourier grid. The forces Rk

satisfy the following requirements. (i) Rk = R∗
−k

, as a result of the Rn being real.
(ii) The variance satisfies

�

|Rk |2
�

=
�

R2
n

�

= 1. Thus, for k �=−k (modulo 2π/L), the
real and imaginary part of the random force Rk both have width 1/

�
2. If k = −k

(modulo 2π/L) then the random force has a real part only, which should be drawn
from a distribution with width 1.

15.6 Comparison of algorithms for scalar field theory

In the previous sections we have described seven different methods for simulating
the scalar field theory on a lattice. We now present a comparison of the
performance of the different methods. We have taken m = 0.1 and g = 0.01 as
the bare parameters on a 16 × 16 lattice. The simulations were carried out on
a standard workstation. The results should not be taken too seriously because
different platforms and different, more efficient codings could give different results.
Moreover, some methods can be parallelised more efficiently than others, which is
important when doing large scale calculations (see Chapter 16). Finally, no real
effort has been put into optimising the programs (except for standard optimisation
at compile time), so the results should be interpreted as trends rather than as
rigorous comparisons.

We give the CPU time needed for one simulation step and the correlation time,
measured in simulation steps. The error in the run time is typically a few per cent,
and that in the correlation time is typically between 5 and 10 per cent. For each
method we include results for an 8×8 and a 16×16 lattice to show how the CPU
time per step and the correlation time scale with the lattice size. All programs
give the correct results for the renormalised mass and coupling constant, which
have been presented before. The number of MC or MD steps in these simulations
varied from 30 000 to 100 000, depending on the method used. In the Andersen
method, we used 100 steps between momentum refreshing for h = 0.05 and 50
steps for h = 0.1. The time steps used in the hybrid algorithm were chosen such
as to stabilise the acceptance rate at 70 per cent. In this algorithm, 10 steps were
used between the updates. The time step h = 0.2 given for the Fourier-accelerated
Langevin method is in fact the proportionality constant between hk and the inverse
propagator:

hk = 0.2
�

Kk,−k

. (15.106)

From the table it is seen that for small lattices the heat bath and the hybrid
methods are most efficient. For larger lattices, the multigrid and Fourier-accelerated
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Table 15.3: Comparison between different methods for simulating the scalar quantum field
theory on a lattice. The time units are only relative: no absolute run times should be
deduced from them. The correlation time is measured in simulation steps (MD steps or
MCS). For the methods with momentum refreshment, the correlation time is measured
in MD steps. The overall efficiency in the last column is the inverse of (CPU time ×
correlation time). For 16×16 lattices this number has been multiplied by four.

Method Described
in section

Lattice
size

Time
constant

h

Correlation
time

CPU
time

Overall
efficiency

Metropolis 15.4.1 8 28 110 0.32
Metropolis 15.4.1 16 97 416 0.10
Heat bath 15.4.1 8 6.5 103 1.49
Heat bath 15.4.1 16 24 392 0.43
Andersen 15.4.3.1 8 0.05 170 32 0.063
Andersen 15.4.3.1 8 0.1 85 31 0.38
Andersen 15.4.3.1 16 0.1 110 124 0.29
Hybrid 15.4.3.2 8 0.365 15 45 1.48
Hybrid 15.4.3.2 16 0.22 60 175 0.38
Langevin 15.4.3.3 8 0.1 560 82 0.022
Langevin 15.4.3.3 16 0.1 2200 322 0.0056
Multigrid 15.5.4 8 1.5 1440 0.46
Multigrid 15.5.4 16 1.5 5750 0.46
Four/Lang 15.5.5 8 0.2 10 118 0.85
Four/Lang 15.5.5 16 10 523 0.76

Langevin methods take over, where the latter seems to be more efficient. However,
its efficiency decreases logarithmically with size (multigrid remains constant) and
comparisons of the values obtained with this method and MC simulations are
always a bit hazardous, although these results may be very useful in themselves.

15.7 Gauge field theories

15.7.1 The electromagnetic Lagrangian

The scalar field theory is useful for some applications in particle physics and
statistical mechanics – however, the fundamental theories describing elementary
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particles have a more complicated structure. They include several kinds of particles,
some of which are fermions. Intermediate particles act as ‘messengers’ through
which other particles interact. It turns out that the action has a special kind of local
symmetry, the so-called ‘gauge symmetry’.

Global symmetries are very common in physics: rotational and translational
symmetries play an important role in the solution of classical and quantum
mechanical problems. Such symmetries are associated with a transformation
(rotation, translation) of the full space, which leaves the action invariant. Local
symmetries are operations which vary in space–time, and which leave the action
invariant. You have probably met such a local symmetry: electrodynamics is the
standard example of a system exhibiting a local gauge symmetry. The behaviour of
electromagnetic fields in vacuum is described by an action defined in terms of the
four-vector potential Aµ(x) (x is the space–time coordinate):40

SEM = 1

4

�

d 4xFµνFµν ≡
�

d 4x LEM(∂µAν) (15.107a)

with
Fµν = ∂µAν−∂νAµ. (15.107b)

LEM = 1
4

FµνFµν is the electromagnetic Lagrangian. The gauge symmetry of
electrodynamics is a symmetry with respect to a particular class of space–time
dependent shifts of the four-vector potential Aµ(x):

Aµ(x) → Aµ(x)+∂µχ(x), (15.108)

where χ(x) is some scalar function. It is easy to check that the action (15.107a) is
indeed invariant under the gauge transformation (15.108). If sources jµ are present
[ j = (ρ, j) where ρ is the charge density, and j the current density], the action reads

SEM = 1

4

�

d 4x(FµνFµν+ jµAµ). (15.109)

The Maxwell equations are found as the Euler-Lagrange equations for this action.
The action is gauge invariant if the current is conserved, according to

∂µ jµ(x) = 0. (15.110)

A quantum theory for the electromagnetic field (in the absence of sources) is
constructed proceeding in the standard way, by using the action (15.107a) in the
path integral. If we fix the gauge, for example by setting ∂µAµ = 0 (Lorentz gauge),
the transition probability for going from an initial field configuration Ai at ti to Af
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at tf for imaginary times (we use Euclidean metric throughout this section) is given
by

〈Af; tf|Ai; ti〉=
�

[D Aµ]exp

�

−1

ℏ

�tf

ti

d t LEM(∂µAν)

�

(15.111)

where the path integral is over all vector potential fields which are compatible with
the Lorentz gauge and with the initial and final vector potential fields at times ti

and tf respectively. If we do not fix the gauge, this integral diverges badly, whereas
for a particular choice of gauge, the integral converges.

Just as in the case of scalar fields, the excitations of the vector potential field are
considered as particles. These particles are massless: they are the well-known
photons. The electromagnetic field theory is exactly solvable: the photons do
not interact, so we have a situation similar to the free field theory. The theory
becomes more interesting when electrons and positrons are coupled to the field.
These particles are described by vector fields ψ(x) with D = 2[d/2] components
for d-dimensional space–time ([x] denotes the integer part of x), so D = 4 in
four-dimensional space–time (d = 4). The first two components of the four-vector
correspond to the spin-up and down states of the fermion (e.g. the electron)
and the third and fourth components to the spin-up and down components of
the anti-fermion (positron). The Euler-Lagrange equation for a fermion system
interacting with an electromagnetic field is the famous Dirac equation:

�

γµ(∂µ− i e Aµ)+m
�

ψ(x) = 0. (15.112)

The objects γµ are Hermitian D × D matrices obeying the anti-commutation
relations:

[γµ,γν]+ = γµγν+γνγµ = 2δµν (15.113)

(in Minkowski metric, δµν is to be replaced by gµν). The Dirac equation is invariant
under the gauge transformation (15.108) if it is accompanied by the following
transformation of the ψ:

ψ(x) → ei eχ(x)ψ(x). (15.114)

The action from which the Dirac equation can be derived as the Euler-Lagrange
equation is the famous quantum electrodynamics (QED) action:

SQED =
�

d 4x
�

− ψ̄(x)(γµ∂µ+m)ψ(x)+

i e Aµ(x)ψ̄(x)γµψ(x)− 1

4
Fµν(x)Fµν(x)

�

. (15.115)

Here, ψ(x) and ψ̄(x) are independent fields. The Dirac equation corresponds to the
Euler-Lagrange equation of this action with

ψ̄(x) =ψ†(x)γ0. (15.116)
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The QED action itself does not show the fermionic character of the ψ-field, which
should however not disappear in the Lagrangian formulation. The point is that
the ψ field is not an ordinary c-number field, but a so-called Grassmann field.
Grassmann variables are anti-commuting numbers – Grassmann numbers a and b

have the properties:
ab +ba = 0. (15.117)

In particular, taking a = b, we see that a2 = 0. We do not go into details concerning
Grassmann algebra4, 5, 41 but mention only the result of a Gaussian integration over
Grassman variables. For a Gaussian integral over a vector ψψψ we have the following
result for the components of ψψψ being ordinary commuting, or Grassmann anti-
commuting numbers:

�

dψ1 . . .dψN exp(−ψψψT Aψψψ) =
�

�

(2π)N

det(A)
commuting;

�
det(A) anti-commuting.

(15.118)

The matrix A is symmetric. In quantum field theories such as QED, we need a
Gaussian integral over complex commuting and noncommuting variables, with the
result:

�

dψ1dψ∗
1 . . .dψN dψ∗

N exp(−ψψψ† Aψψψ) =
�

(2π)N /det(A) commuting;

det(A) anti-commuting
(15.119)

for a Hermitian matrix A. Fortunately the Lagrangian depends only quadratically
on the fermionic fields, so only Gaussian integrals over Grassmann variables occur
in the path integral.

15.7.2 Electromagnetism on a lattice – quenched compact QED

Physical quantities involving interactions between photons and electrons, such as
scattering amplitudes, masses and effective interactions can be derived from the
QED Lagrangian in a perturbative analysis. This leads to divergences similar to
those mentioned in connection with scalar fields, and these divergences should be
renormalised properly by choosing values for the bare coupling constant e and
mass m occurring in the Lagrangian such that physical mass and coupling constant
become finite – more precisely, they become equal to the experimental electron
mass and the charge which occurs in the large-distance Coulomb law in three spatial
dimensions:

V (r ) = e2

4πǫ0r
(15.120)



544 Computational methods for lattice field theories

(for short distances, this formula is no longer valid as a result of quantum
corrections).

Instead of following the perturbative route, we consider the discretisation of
electrodynamics on a lattice (the Euclidean metric is most convenient for lattice
calculations, so it is assumed throughout this section). This is less straightforward
than in the scalar field case as a result of the greater complexity of the QED
theory. We work in a space–time dimension d = 4. We first consider the
discretisation of the photon gauge field and describe the inclusion of fermions
below. An important requirement is that the gauge invariance should remain
intact. Historically, Wegner’s Ising lattice gauge theory42 showed the way to the
discretisation of continuum gauge theories. We now describe the lattice formulation
for QED which was first given by Wilson43 and then show that the continuum limit
for strong coupling is the conventional electromagnetic gauge theory.

We introduce the following objects, living on the links µ of a square lattice with
sites denoted by n:

Uµ(n) = exp
�

i ea Aµ(n)
�

= exp
�

iθµ(n)
�

(15.121)

where we have defined the dimensionless scalar variables θµ = ea Aµ. The action
on the lattice is then written as a sum over all plaquettes, where each plaquette
carries an action (see Figure 15.6):

Splaquette(n;µν) =Re
�

1−Uµ(n)Uν(n +µ)U∗
µ (n +µ+ν)U∗

ν (n +ν)
�

. (15.122)

Note that the effect of complex conjugation is a sign-reversal of the variable θµ. The

n n+

n+n+

µ

µ+νν

Figure 15.6: A lattice plaquette at site n with sides µ and ν used in (15.122).

U ’s are orientation-dependent: Uµ(n) =U †
−µ(n). The constant 1 has been included

in (15.122) to ensure that the total weight of a configuration with all θ-values being
equal to zero vanishes. Note that the integration over θ is over a range 2π, so it
does not diverge, in contrast to the original formulation, where the gauge must be
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fixed in order to prevent the path integral on a finite lattice from becoming infinite
[see also the remark after Eq. (15.111)]. The plaquette action can also be written as

Splaquette(n;µν) =µν
�

1−cos
�

θµν(n)
��

(15.123)

where the argument of the cosine is the sum over the θ-variables around the
plaquette as in Figure 15.6:

θµν(n) = θµ(n)+θν(n +µ)−θµ(n +µ+ν)−θµ(n +ν). (15.124)

The total action
SLQED =

�

n;µν
Splaquette(n;µν) (15.125)

occurs in the exponent of the time evolution operator or of the Boltzmann factor
(for field theory in imaginary time). The partition function of the Euclidean field
theory is

ZLQED(β) =
�2π

0

�

n,µ
dθµ(n)exp

�

−βSLQED
�

, (15.126)

where the product
�

n,µ is over all the links of the lattice. For low temperature
(large β), only values of θ close to 0 (mod 2π) will contribute significantly to the
integral. Expanding the cosine for small angles, we can extend the integrals to the
entire real axis and obtain

SLQED(β large) =
�

n,µ,ν

1

2

�

µνθ(n)
�2

. (15.127)

Using θµ = ea Aµ and the fact that the lattice constant a is small, we see that the
action can be rewritten as

βSLQED ≈ β

4

�

d 4x

a4

�

a4e2Fµν(x)Fµν(x)
�

, (15.128)

where now the summation is over all µν, whereas in the sums above (over the
plaquettes), µ and ν were restricted to positive directions. The Fµν are defined in
Eq. (15.107b). Taking β= 1/e2 we recover the Maxwell Lagrangian:

βSLQED ≈ 1

4

�

d 4xFµνFµν (15.129)

in the continuum limit.
What are interesting objects to study? Physical quantities are gauge invariant,

so we search for gauge-invariant correlation functions. Gauge invariance can be
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formulated in the lattice model as an invariance under a transformation defined by
a lattice function χ(n) which induces a shift in the θµ(n):

θµ(n) → θµ(n)+ χ(n +µ)−χ(n)

a
. (15.130)

This suggests that gauge-invariant correlation functions are defined in terms of a
sum over θµ over a closed path: in that case a gauge transformation does not induce
a change in the correlation function since the sum over the finite differences of the
gauge function χ(n) over the path will always vanish. Furthermore, as correlation
functions usually contain products of variables at different sites, we consider the
so-called Wilson loop correlation function:

W (C ) =
�

�

n,µǫC

eiθµ(n)

�

, (15.131)

where the product is over all links n,µ between site n and its neighbour n+µ lying
on the closed loop C – see Figure 15.7.43

C

t

x

t

x

(a) (b)

Figure 15.7: The Wilson loop on a two-dimensional square lattice. (a) shows a general
Wilson loop and (b) shows a two-fermion loop in a gauge field theory with infinite mass
fermions.

The Wilson loop correlation function has a physical interpretation. Suppose
we create at some time ti a fermion-antifermion pair, which remains in existence
at fixed positions up to some time tf, at which the pair is annihilated again.
Without derivation we identify the partition function of the gauge field in the
presence of the fermion-antifermion pair with the Wilson loop correlation function
in Figure 15.7(b) times the vacuum partition function – for a detailed derivation see



15.7. Gauge field theories 547

refs. 6, 44, 45. Now let us stretch the loop in the time direction, T = tf−ti →∞. The
effective interaction between two electrons at a distance R is given by the difference
between the ground state energy in the presence of the fermion-antifermion pair
(which we denote by 2f) and the ground state energy of the vacuum:

V (R) =
�

ψ
(2f)
G

�

�

�H
�

�

�ψ
(2f)
G

�

2f
−
�

ψ
(vac)
G

�

�

�H
�

�

�ψ
(vac)
G

�

vac
. (15.132)

This expression can however be evaluated straightforwardly in the Lagrangian
picture. We have

e−T V (R) = Z (C )

Z
=W (C ) (15.133)

where C is the rectangular contour of size T (time direction) and R (space
direction); Z (C ) is the partition function evaluated in the presence of the Wilson
loop, and Z is the vacuum partition function. Note that the fact that T is taken
large, guarantees that the ground state of the Hamiltonian is projected out in the
simulation.

By varying the coupling β, different results for the value of the Wilson loop
correlation function are found. For large loops we have either the ‘area law’:

W (C ) = exp
�

Const.×Area within loop
�

, (15.134)

or the ‘perimeter law’ :

W (C ) = exp
�

Const.×Perimeter of loop
�

, (15.135)

with additional short-corrections. Let us consider the area law. In that case we find
V (R) ∼ R, which means that the two particles cannot be separated: pulling them
infinitely far apart requires an infinite amount of energy. We say that the particles
are confined. On the other hand, the perimeter law says that V (R) is a constant (it
is dominated by the vertical parts of length T ), up to corrections decaying to zero
for large R (for the confined case, these corrections can be neglected). For d = 4

one finds after working out the dominant correction term V (R) ∼Const.−e2/R, i.e.
Coulomb’s law.44 We see that the lattice gauge theory incorporates two different
kinds of gauge interactions: confined particles and electrodynamics. The analysis
in which the fermions are kept at fixed positions corresponds to the fermions having
an infinite mass. It is also possible to allow for motion of the fermions by allowing
the loops of arbitrary shape, introducing gamma-matrices in the resulting action.
The procedure in which the fermions are kept at fixed positions is called ‘quenched
QED’ – in quenched QED, vacuum polarisation effects (caused by the fact that
photons can create electron-positron pairs) are not included.

We know that electrodynamics does not confine electrons: the lattice gauge
theory in four dimensions has two phases, a low-temperature phase in which
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the interactions are those of electrodynamics, and a high-temperature phase in
which the particles are confined46 (‘temperature’ is inversely proportional to the
coupling constant β). The continuum limit of electrodynamics is described by the
low-temperature phase of the theory. Why have people been interested in putting
QED on a grid? After all, perturbation theory works very well for QED, and
the lattice theory gives us an extra phase which does not correspond to reality
(for QED). The motivation for studying lattice gauge theories was precisely this
latter phase: we know that quarks, the particles which are believed to be the
constituents of mesons and hadrons, are confined: an isolated quark has never
been observed. Lattice gauge theory provides a mechanism for confinement!
Does this mean that quarks are part of the same gauge theory as QED, but
corresponding to the high-temperature phase? No: there are reasons to assume that
a quark theory has a more complex structure than QED, and moreover, experiment
has shown that the interaction between quarks vanishes when they come close
together, in sharp contrast with the confining phase of electrodynamics in which
the interaction energy increases linearly with distance. The high-temperature
phase of the gauge theory considered so far is always confining, so this does not
include this short-distance decay of the interaction, commonly called ‘asymptotic
freedom’.6, 44, 45, 47, 48 We shall study the more complex gauge theory which is
believed to describe quarks later – this theory is called ‘quantum chromodynamics’
(QCD).

The lattice version of quantum electrodynamics using variables θµ ranging from
0 to 2π is often called U (1) lattice gauge theory because the angle θµ parametrises
the unit circle, which in group theory is called U (1). Another name for this field
theory is ‘compact QED’ because the values assumed by the variable θµ form a
compact set, as opposed to the noncompact Aµ field of continuum QED. Compact
QED can be formulated in any dimension, and in the next section we discuss an
example in 1 space + 1 time dimension.

15.7.3 A lattice QED simulation

We describe a QED lattice simulation for determining the inter-fermion potential.
We do this by determining the Wilson loop correlation function described in the
previous section. Only the gauge field is included in the theory – the fermions
have a fixed position, and the photons exchanged between the two cannot generate
fermion–antifermion pairs (vacuum polarisation). This is equivalent to assigning
an infinite mass to the fermions. We use a square lattice with periodic boundary
conditions.

We consider the 1+1-dimensional case. This is not a very interesting theory
by itself – it describes confined fermions, as the Coulomb potential in one spatial
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dimension is confining:
V (x) ∼ |x|, (15.136)

but we treat it here because it is simple and useful for illustrating the method. The
theory can be solved exactly (see problem 15.6):44 the result is that the Wilson loop
correlation function satisfies the area law:

W = exp(−αA) (15.137)

(A is the area enclosed within the loop) with the proportionality constant α given
in terms of the modified Bessel functions In :

α=− ln

�

I1(β)

I0(β)

�

; (15.138)

β is the coupling constant (inverse temperature). In fact the area law holds only for
loops much smaller than the system size; deviations from this law occur when the
linear size of the loop approaches half the system size.

The system can be simulated straightforwardly using the Metropolis algorithm,
but we shall use the heat bath algorithm because of its greater efficiency. We want
the coefficient α to be not too large, as large values of α cause W (C ) to decay very
rapidly with size, so that it cannot be distinguished from the simulation noise for
loops of a few lattice constants. From (15.138) we see that β must be large in that
case – we shall use β= 10. This causes the probability distribution P (θµ) for some
θµ, embedded in a particular, fixed configuration of θµ on neighbouring links, to be
sharply peaked. Therefore it is not recommended to take θµ random between 0 and
2π and then accept with probability P (θµ) and retry otherwise, as in this approach
most trial values would end up being rejected. We shall therefore first generate a
trial value for θµ according to a Gaussian probability distribution.

The distribution P (θ) has the form

P (θ) = exp
�

−β [cos(θ−θ1)+cos(θ−θ2)]
�

(15.139)

where θ1 and θ2 are fixed – they depend on the θ-values on the remaining links of
the plaquettes containing θ. The sum of the two cosines can be rewritten as

cos(θ−θ1)+cos(θ−θ2) = 2cos

�

θ1 −θ2

2

�

cos

�

θ− θ1 +θ2

2

�

. (15.140)

We define

β̃= 2βcos

�

θ1 −θ2

2

�

and (15.141a)

φ= θ− θ1 +θ2

2
(15.141b)
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so that our task is now to generate an angle φ with a distribution exp(−β̃cosφ).
We distinguish between two cases: (i) β̃ > 0. In that case the maximum of the
distribution occurs at φ = π. A Gaussian distribution centred at π and with width

σ=π/(2

�

β̃) and amplitude exp
�

β̃
�

is always close to the desired distribution. The
Gaussian random numbers must be restricted to the interval [−π,π]. Therefore the
algorithm becomes:

REPEAT
REPEAT

Generate a Gaussian random variable −r with width 1;
φ=σr ;

UNTIL −π≤φ≤π;
φ→φ+π;
Accept this trial value with probability

exp
�

−β̃
�

cosφ+1− (φ−π)2/(2σ2)
��

;
UNTIL Accepted;
θ =φ+ θ1+θ2

2
.

(ii) If β̃ < 0 then the distribution is centred around φ = 0. In that case, we do not
shift the Gaussian random variable over π. The reader is invited to work out the
analogue of the algorithm for case (i).

In the simulation we calculate the averages of square Wilson loops, given in
Eq. (15.131) (it should be emphasised that for the area law it is not required
to have T ≫ R). This is done by performing a loop over all lattice sites and
calculating the sum of the θµ over the square loop with lower left corner at the
current site. The expectation values for different square sizes can be calculated
in a single simulation. Figure 15.8 shows the average value of the Wilson loop
correlation functions as a function of the area enclosed by the loop for a 16× 16

and a 32× 32 lattice. The drawn straight line is the theoretical curve with slope
α as in (15.138). From this figure it is seen that the area law is satisfied well for
loops which are small with respect to half the lattice size. By implementing free
boundary conditions, the theoretical curve can be matched exactly, but this requires
a little more bookkeeping.

15.7.4 Including dynamical fermions

In real problems studied by particle physicists, fermions are to be included into
the lattice action, and not in a quenched fashion as done in the previous section.
In this section we focus on dynamical fermions, which cause two problems. First
of all, a straightforward discretisation of the fermion action leads to 2d species of
uncoupled fermions to be included into the problem (in d space–time dimensions)
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Figure 15.8: The Wilson loop correlation function as a function of the enclosed area for
1+1 dimensional lattice QED. Note that the vertical scale is logarithmic, so that the straight
line is compatible with the area law. The values were determined in a heat bath simulation
using 40 000 updates (first 2000 rejected).

instead of the desired number of fermion species (‘flavours’). Second, we have
not yet discussed the problem of including the fermion character in a path integral
simulation. We first consider the ‘fermion doubling problem’ and then sketch how
simulations can actually be carried out for theories including fermions.

15.7.4.1 Fermions on a lattice

When calculating the path integral for free fermions for which the Lagrangian is
quadratic in the fermion fields, the following Gaussian Grassmann integral must be
evaluated:

�

�

DψDψ̄
�

e−ψ̄Mψ, (15.142)

where the kernel M is given as

M = m +γµ∂µ. (15.143)

The expression in the exponent is short-hand for an integral over the space–time
coordinates. Discretising the theory on the lattice and Fourier transforming the
fields and M we find that the latter becomes diagonal:

Mk,k ′ =
�

m + i

a

�

µ
γµ sin(kµa)

�

δ(k +k ′). (15.144)



552 Computational methods for lattice field theories

The lattice version of M is therefore the Fourier transform of this function.
There is a problem with this propagator. The continuum limit singles out only

the minima of the sine as a result of the factor 1/a in front of it. These are found
not only near k = 0 but also near ka = (±π,0,0,0) (in four dimensions) etcetera,
because of the sine function having zeroes at 0 and π. This causes the occurrence
of two different species of fermions per dimension, adding up to 16 species for
four-dimensional space–time. It turns out that this degeneracy can be lifted only at
the expense of breaking the so-called ‘chiral symmetry’ for massless fermions.49

Chiral symmetry is a particular symmetry which is present in the Dirac equation
(and action) for massless particles. Suppose chiral symmetry is present in the lattice
version of the action. This symmetry forbids a mass term to be present, and the
renormalised theory should therefore have m = 0. A lattice action which violates
chiral symmetry might generate massive fermions under renormalisation.

One could ignore the doubling problem and live with the fact that the theory now
contains 2d different species of fermions. However, it is also possible to lift up the
unwanted parts of the propagator by adding a term proportional to 1−cos(akµ) to
it, which for k near 0 does not affect the original propagator to lowest order, but
which lifts the parts for kµa = ±π such that they are no longer picked up in the
contiuum. The method is referred to as the Wilson fermion method. The resulting
propagator is

Mk = m + i

a

�

µ
γµ sin(akµ)+ r

a

�

µ

�

1−cos(akµ)
�

. (15.145)

This form is very convenient because it requires only a minor adaptation of a
program with the original version of the propagator. In real space, and taking
the lattice constant a equal to 1, the Wilson propagator reads in d space–time
dimensions:

Mnl = (m +4r )δnl −
1

2

�

µ

�

(r +γµ)δl ,n+µ+ (r −γµ)δl ,n−µ
�

. (15.146)

The disadvantage of this solution is that the extra terms destroy any chiral
symmetry, which is perhaps a bit too drastic.

In a more complicated method half of the unwanted states are removed by
doubling the period, so that the Brillouin zone of the lattice is cut off at π/(2a)

instead of π/a. This is done by putting different species of fermions on alternating
sites of the lattice. Although this removes the unwanted fermions, it introduces
new fermions which live on alternate sites of the lattice. The resulting method is
called the staggered fermion method. The staggered fermion method respects chiral
symmetry discussed above and is therefore a better option than the Wilson fermion
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method. It is, however, more complicated than the Wilson fermion method and
we refrain from a discussion here, but refer to the original literature50, 51 and later
reviews.6, 45, 52

15.7.4.2 Algorithms for dynamical fermions

If we want to include dynamical rather than quenched fermions into our lattice field
theory, we must generate configurations of anti-commuting fermion fields. As it
is not clear how to do this directly and as this may cause negative probabilities,
various alternatives using results for Gaussian integrals over Grassmann variables
(see Section 15.7.1) have been developed. We shall explain a few algorithms for
an action consisting of a bosonic part, SBoson, defined in terms of the boson field,
A(x), coupled to the fermion field, ψ,ψ, via the fermion kernel, M(A):

S = SBoson(A)+
�

d d xψ̄(x)M(A)ψ(x). (15.147)

The QED Lagrangian in (15.115) has this form.
Integrating out the fermion part of the path integral using (15.119) leads to a path

integral defined entirely in terms of bosons:
�

[D A][Dψ][Dψ]e−[SBoson(A)+ψM(A)ψ] =
�

[D A]det[M(A)]e−LBoson(A)

=
�

[D A]e−LBoson(A)+ln[det(M(A))] (15.148)

(the inverse temperature β is included in the action). Although the determinant
of M(A) is real and usually positive, M(A) is not necessarily a positive definite
Hermitian matrix (a positive definite matrix has real and positive eigenvalues). It is
therefore sometimes useful to consider the matrix

W (A) = M †(A)M(A), (15.149)

in terms of which the path integral can be written as
�

[D A]e−LBoson(A)+ 1
2

ln[det(W (A))]. (15.150)

Now suppose that we want to perform a Metropolis update of the A-field. The
acceptance probability for a trial change A → A′ is

PAccept(A → A′) = e−SBoson(A′)+SBoson(A) det[M(A′)]

det[M(A)]

= e−SBoson(A′)+SBoson(A)

�

det[W (A′)]

det[W (A)]
. (15.151)
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This is very expensive to evaluate since we must calculate the determinant of the
very large matrix M(A) [or W (A)] at every step. A clever alternative follows from
the observation that if the field A changes on one site only (as is usually the case),
very few elements of the matrix M(A) change, which allows us to perform the
calculation more efficiently.53 Another interesting suggestion is that of Bhanot et

al.54 who propose to evaluate the fraction of the determinants as follows:

det[W (A′)]

det[W (A)]
=
�

[Dφ][Dφ∗]e−φ
†W (A)φ

�

[Dφ][Dφ∗]e−φ†W (A′)φ
, (15.152)

where φ is a boson field for which we can use the algorithms given earlier in this
chapter. Defining ΔW = W (A′)−W (A), we can express the ratio in terms of an
expectation value:

det[W (A′)]

det[W (A)]
=
�

exp(φ†
ΔW φ)

�

A′
= 1/

�

exp(−φ†
ΔW φ)

�

A
. (15.153)

It is now possible to calculate this average by updating the field φ in a heat bath
algorithm. As the matrix M(A) is local (it couples only nearest neighbours), W (A)

is local as well (it couples up to next nearest neighbours). Therefore the heat bath
algorithm can be carried out efficiently (it should be possible to apply the SOR
method to this method). Each time we change the field A, the matrix W (A) changes
and a few heat bath sweeps for the field φ have to be carried out. The value of the
fraction of the determinants is determined as the geometrical average of the two
estimators given in Eq. (15.153).

The most efficient algorithms for dynamical fermions combine a molecular
dynamics method for the boson fields with a Monte Carlo approach for the
fermionic part of the action. We describe two of these here. The first one is
a Langevin approach, proposed by Batrouni et al.,17 and suitable for Fourier
acceleration. It is based on two observations: first, det(M) can be written as
exp[Trln(M)], and second, if ξn is a complex Gaussian random field on the lattice,
so that

�

ξ†
l
ξn

�

= δnl (15.154)

(the brackets 〈〉 denote an average over the realisations of the Gaussian random
generator), then the trace of any matrix K can be written as

Tr(K ) =
�

nl

�

ξ†
nKnlξl

�

. (15.155)

In the Langevin approach, the force is given by the derivative of the action
with respect to the boson field. In the presence of fermions, the action reads [see
Eq. (15.148)]:

S = SBoson −Trln[M(A)]. (15.156)
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Therefore the derivative has the form

∂S(A)

∂An
= ∂SBoson(A)

∂An
−Tr

�

M−1(A)
∂M(A)

∂An

�

. (15.157)

To evaluate the trace, we make use of the auxiliary field ξ:

Tr

�

M−1(A)
∂M(A)

∂An

�

=
�

ξ†M−1(A)
∂M(A)

∂An
ξ

�

(15.158)

=
�

i j l

�

ξ∗i M−1
i j (A)

�

∂M(A)

∂An

�

j l

ξl

�

. (15.159)

In the Langevin equation we do not calculate the average over the ξ by generating
many random fields for each step, but instead we generate a single random Gaussian
vector ξ at every MD step, and evaluate the terms in angular brackets in (15.158)
only for this configuration. Below we justify this simplification. The MD step reads
therefore [see Eq. (15.103)]:

An(t +h) = An(t )+ h2

2

�

−∂SBoson(A)

∂An
+ξ†M−1(A)

∂M(A)

∂An
ξ

�

+hηn . (15.160)

The A-fields occurring between the square brackets are evaluated at time t . To
evaluate the second term in the square brackets we must find the vector ψ satisfying

M(A)ψ= ξ, (15.161)

so that the algorithm reads

An(t +h) = A(t )+ h2

2

�

−∂SBoson(A)

∂An
+ψ† ∂M(A)

∂An
ξ

�

+hηn . (15.162)

Finding the vector ψ is time-consuming. Use is made of the sparseness of the
matrix M(A) in order to speed up the calculation.† Note that this calculation is
done only once per time step in which the full boson field is updated.

In the Langevin equation we generate a set of configurations which occur with a
probability distribution given by the action (or rather an approximation to it because
of time discretisation). If we evaluate the average distribution with respect to the
random noise fields η and ξ, the average over the ξ-field gives us back the trace
via equation (15.155), therefore we were justified in replacing the average over the
noise field by the value for the actual noise field. It must be noted that Fourier
acceleration is implemented straightforwardly in this fermion method: after the

†The conjugate gradient method (Section A.8.1.2) is applied to this matrix problem.
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force is evaluated with the noise field ξ, it is Fourier transformed, and the leap-frog
integration proceeds as described in Section 15.5.5.

Finally we describe a combination of MD and MC methods55 which can be
formulated within the hybrid method of Duane et al.;18 see also Section 15.4.3.2.

A first idea is to replace the determinant by a path integral over an auxiliary boson
field:

det[M(A)] =
�

[Dφ][Dφ∗]e−φ
†M−1(A).φ. (15.163)

We want to generate samples of the auxiliary field φ with the appropriate weight.
Equation (15.163) is, however, a somewhat problematic expression as it involves
the inverse of a matrix which moreover is not Hermitian. If we have an even number
of fermion flavours, we can group the fermion fields into pairs, and each pair yields
a factor det[M(A)]2 which can be written as

det[M(A)]2 =
�

[Dφ][Dφ∗]e−φ
†[M(A)†M(A)]−1φ =

�

[Dφ][Dφ∗]e−φ
†[W (A)]−1φ

(15.164)
with W (A) defined in (15.149). Note that we need an even number of fermion
flavours here, because we cannot simply replace the matrix W (A) by its square root
in the following algorithm (see also the beginning of this subsection). This partition
function is much more convenient than (15.163) for generating MC configurations
of the field φ. This is done by an exact heat bath algorithm, in which a Gaussian
random field ξn is generated, and the field φ is then found as

M(A)ξ=φ. (15.165)

For staggered fermions (see Section 15.7.4.1) it turns out that W (A) =
M(A)†M(A) couples only even sites with even sites, or odd sites with odd sites.56, 57

Therefore the matrix W (A) factorises into an even-even (ee) and an odd-odd one
(oo), so that we can write

det[W (A)] = det[W (A)ee]det[W (A)oo]. (15.166)

The matrices W (A)ee and W (A)oo are identical – therefore we have:

det[M(A)] =
�

[Dφ][Dφ∗]e−φ
†[Wee(A)]−1φ. (15.167)

The matrix Wee is Hermitian and positive; it can be written as Wee = M †
eo(A)Moe(A),

where the two partial matrices Meo and Moe are again identical, so we can use the
heat bath algorithm as described, with M(A) replaced by Meo(A).
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The full path integral contains only integrations over boson fields:

Z =
�

[D A][Dφ][Dφ∗]e−SBoson(A)−φ†W −1(A)φ (15.168)

where subscripts ee for W should be read in the case of staggered fermions. We
want to formulate a molecular dynamics algorithm for the boson field A, but
generate the auxiliary field configurations φ with an MC technique. This procedure
is justified because the MD trajectory between an acceptance/rejection decision is
reversible, and the acceptance/rejection step ensures detailed balance.

We assign momenta to the boson field A only:

Z =
�

[D A][Dφ][Dφ∗][DP ]e−
1
2

�

n P 2
n (x)−SBoson(A)−φ†W −1(A)φ. (15.169)

The equations of motion for the field A and its conjugate momentum P are then
given by

Ȧn = Pn ; (15.170a)

Ṗn =−∂SBoson

∂An
−
�

l m

φ†
l

∂
�

W −1
l m

(A)
�

∂An
φm . (15.170b)

The difficult part is the second equation which involves the derivative of the inverse
of W (A). The key observation is now that

∂W −1(A)

∂An
=W −1(A)

∂W (A)

∂An
W −1(A), (15.171)

so that we need the vector η with

W (A)η=φ. (15.172)

This can be found using a suitable sparse matrix algorithm. Using this η-field, the
equation of motion for P simply reads:

Ṗn =−∂SBoson

∂An
−η† ∂(M †M)

∂An
η. (15.173)

Summarising, a molecular dynamics update consists of the following steps:

ROUTINE MDStep
Generate a Gaussian random configuration ξ;
Calculate φ= M(A)ξ;
Calculate η from (M †M)η=φ;
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Update the boson field A and its conjugate momentum field P using
P (t +h/2) = P (t −h/2)−h

�

∂SBoson
∂An

+η∂(MTM)
∂An

η
�

and
A(t +h) = A(t )+hP (t +h/2).

END MDStep

We see that in both the Langevin and the hybrid method, the most time-consuming
step is the calculation of a (sparse) matrix equation at each field update step (in the
above algorithm this is the step in the third line).

15.7.5 Non-abelian gauge fields – quantum chromodynamics

QED is the theory for charged fermions interacting through photons, which are
described by a real-valued vector gauge field Aµ. Weak and strong interactions
are described by similar, but more complicated theories. A difference between
these theories and QED is that the commuting complex phase factors Uµ(n) of
QED are replaced by noncommuting matrices, members of the group SU(2) (for
the weak interaction) or SU(3) (strong interaction). Furthermore, in quantum
chromodynamics (QCD), the SU(3) gauge theory for strong interactions, more than
one fermion flavour must be included. In this section we focus on QCD, where the
fermions are the quarks, the building blocks of mesons and hadrons, held together
by the gauge particles, called gluons. The latter are the QCD analogue of photons
in QED.

Quarks occur in different species, or ‘flavours’ (‘up’, ‘down’, ‘strange’,. . . ); for
each species we need a fermion field. In addition to the flavour quantum number,
each quark carries an additional colour degree of freedom: red, green or blue.
Quarks form triplets of the three colours (hadrons, such as protons and neutrons),
or doublets consisting of colour-anticolour (mesons) – they are always observed in
colourless combinations. Quarks can change colour through the so-called strong

interactions. The gluons are the intermediary particles of these interactions – they
are described by a gauge field of the SU(3) group (see below). The gluons are
massless, just as the photons in QED.

The U(1) variables of QED were parametrised by a single compact variable θ

[U = exp(iθ)]. In QCD these variables are replaced by SU(3) matrices. These
matrices are parametrised by eight numbers – they correspond to eight gluon fields
Aa
µ, a = 1, . . . ,8 (gluons are insensitive to flavour). The gluons are massless, just as

the photons, because inclusion of a mass term m2 AµAµ, analogous to that of the
scalar field, destroys the required gauge invariance.

Experimentally, quarks are found to have almost no interaction at short
separation, but when the quarks are pulled apart their interaction energy becomes
linear with the separation, so that it is impossible to isolate one quark. The colour
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interaction carried by the gluon fields is held responsible for this behaviour. There
exists furthermore an intermediate regime, where the interaction is Coulomb-like.

The fact that the interaction vanishes at short distances is called ‘asymptotic
freedom’. It is possible to analyse the behaviour of quarks and gluons in the
short-distance/small coupling limit by perturbation theory, which predicts indeed
asymptotic freedom.47, 58, 59 The renormalised coupling constant increases with
increasing distance, and it is this coupling constant which is used as the perturbative
parameter. At length scales of about 1 fm the coupling constant becomes too
large, and the perturbative expansion breaks down. This is the scale of hadron
physics. The break-down of perturbation theory is the reason why people want to
study SU(3) gauge field theory on a computer, as this allows for a nonperturbative
treatment of the quantum field theory. The lattice formulation has an additional
advantage. If we want to study the time evolution of a hadron, we should specify
the hadron state as the initial state. But the hadron state is very complicated! If
we take the lattice size in the time direction large enough, the system will find the
hadron state ‘by itself’ because that is the ground state, so that this problem does
not occur.

The QCD action has the following form (i = 1,2,3 denotes the colour degree of
freedom of the quarks, f the flavour):

SQCD =
�

d 4x

�

1

4
F a
µνF aµν+

�

f

�

i j

iψ
i
f γ

µ

�

δi j∂µ+ i g
Aa
µ

2
λa

i j

�

ψ
j

f

+
�

f

�

i

m f ψ
i
f ψ

i
f

�

. (15.174)

The matrices λa are the eight generators of the group SU(3) [they are the Gell-
Mann matrices, the analogue for SU(3) of the Pauli matrices for SU(2)], satisfying

Tr(λaλb) = δa,b . (15.175)

The m f are the quark masses, and F a
µν is more complicated than its QED

counterpart:
F a
µν = ∂µAa

ν −∂νAa
µ− g f abc Ab

µAc
ν; (15.176)

the constants f abc are the structure constants of SU (3), defined by

[λa ,λb] = 2i
�

c

f abcλc . (15.177)

The parameter g is the coupling constant of the theory; it plays the role of the charge
in QED. A new feature of this action is that the f abc-term in (15.176) introduces
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interactions between the gluons, in striking contrast with QED where the photons
do not interact. This opens the possibility to have massive gluon bound states, the
so-called ‘glueballs’.

When we regularised QED on the lattice, we replaced the gauge field Aµ by
variables Uµ(n) = ei e Aµ(n) living on a link from site n along the direction given by
µ. For QCD we follow a similar procedure: we put SU(3) matrices Uµ(n) on the
links. They are defined as

Uµ(n) = exp

�

i g
�

a

Aa
µλ

a/2

�

. (15.178)

The lattice action is now constructed in terms of these objects. The gauge part of
the action becomes

SGauge =
1

4
F a
µνF aµν →− 1

g 2
Tr
�

Uµ(n)Uν(n +µ)U †
µ(n +ν)U †

ν(n)+

Hermitian conjugate
�

. (15.179)

The quark part of the action, which includes the coupling with the gluons, reads in
the case of Wilson fermions (see above):

SFermions =
�

n

(m +4r )ψ̄(n)ψ(n)−
�

n,µ

�

ψ̄(n)(r −γµ)Uµ(n)ψ(n +µ)+

ψ̄(n +µ)(r +γµ)U †
µ(n)ψ(n)

�

. (15.180)

An extensive discussion of this regularisation, including a demonstration that its
continuum limit reduces to the continuum action (15.174) can be found for example
in Rothe’s book.45 The lattice QCD action

SLQCD = SGauge +SFermions (15.181)

can now be simulated straightforwardly on the computer, although it is certainly
complicated. We shall not describe the procedure in detail. In the previous sections
of this chapter we have described all the necessary elements, except for updating
the gauge field, which is now a bit different because we are dealing with matrices
as stochastic variables as opposed to numbers. Below we shall return to this point.

Simulating QCD on a four-dimensional lattice requires a lot of computer time
and memory. A problem is that the lattice must be rather large. To see this, let
us return to the simpler problem of quenched QCD, where the quarks have infinite
mass so that they do not move; furthermore there is no vacuum polarisation in that
case. The Wilson loop correlation function, now defined as

W (C ) = Tr
�

(n,µ)ǫC

Uµ(n), (15.182)
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where the product is to be evaluated in a path-ordered fashion, i.e. the matrices
must be multiplied in the order in which they are encountered when running
along the loop. This is different from QED and reflects the fact that the U ’s are
noncommuting matrices rather than complex numbers. This correlation function
gives us the quenched inter-quark potential in the same way as in QED. In
this approximation, perturbative renormalisation theory can be used to find an
expansion for the potential at short distances in the coupling constant, g , with the
result:

V (R, g , a) = C

4πR

�

g 2 + 22

16π2
g 4 ln

R

a
+O (g 6)

�

. (15.183)

Here C is a constant. We see that the coefficient of the second term increases for
large R, rendering the perturbative expansion suspect, as mentioned before. The
general form of this expression is

V (R, g , a) =α(R)/R, (15.184)

in other words, a ‘screened Coulomb’ interaction. Equation (15.183) can be
combined with the requirement that the potential should be independent of the
renormalisation cut-off a

a
dV (r, g , a)

d a
= 0 (15.185)

to find a relation between the coupling constant g and the lattice constant a. To see
how this is done, see refs. 45, 48 and 6. This relation reads

a =Λ
−1
0 (g 2γ0)γ1/(2γ2

0) exp[−1/(2γ0g 2)][1+O (g 2)]. (15.186)

This implies that g decreases with decreasing a, in other words, for small distances
the coupling constant becomes small. From (15.183) we then see that the potential
is screened to zero at small distances. This is just the opposite of ordinary
screening, where the potential decays rapidly for large distances. Therefore, the
name ‘anti-screening’ has been used for this phenomenon, which is in fact the
asymptotic freedom property of quarks. The constants γ0 and γ1 are given by
γ0 = (11− 2n f /3)/(16π2) and γ1 = (102− 22n f /3)/(16π2)2 repectively (n f is the
number of flavours), and Λ0 is an integration constant in this derivation – it must be
fixed by experiment. Any mass is given in units of a−1, which in turn is related
to g through the mass constant Λ0. The important result is that if we do not
include quark masses into the theory, only a single number must be determined
from experiment, and this number sets the scale for all the masses, such as the
masses of glueballs, or those of massive states composed of zero-mass quarks.
Therefore, after having determined Λ0 from comparison with a single mass, all
other masses and coupling constants can be determined from the theory, that is,
from the simulation.
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Nice this result may be, it tells us that if we simulate QCD on a lattice, and if
we want the lattice constant a to be small enough to describe the continuum limit
properly, we need a large lattice. The reason is that the phase diagram for the
SU(3) lattice theory is simpler than that of compact QED in four dimensions. In
the latter case, we have seen that there exist a Coulomb phase and a confined phase,
separated by a phase transition. In lattice QCD there is only one phase, but a secret
length scale is set by the lattice parameter for which (15.186) begins to hold. The
lattice theory will approach the continuum theory if this equation holds, that is,
if the lattice constant is sufficiently small. If we want to include a hadron in the
lattice, we need a certain physical dimension to be represented by the lattice (at
least a ‘hadron diameter’). The small values allowed for the lattice constant and the
fixed size required by the physical problem we want to describe cause the lattice
to contain a very large number of sites. Whether it is allowed to take the lattice
constant larger than the range where (15.186) applies is an open question, but this
cannot be relied upon.

In addition to the requirement that the lattice size exceeds the hadronic scale, it
must be large enough to accomodate small quark masses. The reason is that there
exist excitations (‘Goldstone bosons’) on the scale of the quark mass. The quark
masses which can currently be included are still too high too predict the instability
of the ρ-meson for example.

At the time of writing, many interesting results on lattice QCD have been
obtained and much is still to be expected. A very important breakthrough is the
formulation of improved staggered fermion (ISF) actions, which approximate the
continuum action to higher order in the latice constant than the straightforward
lattice formulations discussed so far.60–62 This makes it possible to obtain results
for heavy quark, and even for lighter ones, important properties have been or are
calculated,62 such as decay constants for excited hadron states.

An interesting state of matter is the quark-gluon plasma, which is the QCD
analog of the Kosterlitz-Thouless phase transition: the hadrons can be viewed as
bound pairs or triplets of quarks, but for high densities en high temperatures, the
‘dielectric’ system may ‘melt’ into a ‘conducting’, dense system of quarks and
gluons. This seems to have been observed very recently after some ambiguous
indications. It turns out that this state of matter resembles a liquid. Lattice gauge
theorists try to match these results in their large scale QCD calculations. For a
recent review, see Ref. 63.

To conclude, we describe how to update gauge fields in a simulation. In a
Metropolis approach we want to change the matrices Uµ(n) and then accept or
reject these changes. A way to do this is to fill a list with ‘random SU(3)’ matrices,
which are concentrated near the unit matrix. We multiply our link matrix Uµ(n) by
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a matrix taken randomly from the list. For this step to be reversible, the list must
contain the inverse of each of its elements. The list must be biased towards the
unit matrix because otherwise the changes in the matrices become too important
and the acceptance rate becomes too small. Creutz6, 64 has developed a clever heat
bath algorithm for SU(2). Cabibbo and Marinari65 have devised an SU(3) variant
of this method in which the heat bath is successively applied to SU(2) subgroups
of SU(3).

Exercises

15.1 Consider the Gaussian integral

I1 =
�∞

−∞
d x1 . . .d xN e−xAx

where x = (x1, . . . , xN ) is a real vector and A is a Hermitian and positive N ×N

matrix (positive means that all the eigenvalues λi of A are positive).

(a) By diagonalising A, show that the integral is equal to

I1 =

�

�

�

�

(2π)N

�N
i=1λi

=

�

(2π)N

det(A)
.

(b) Now consider the integral

I2 =
�

d x1d x∗
1 . . .d xN d x∗

N e−x† Ax

where x is now a complex vector. Show that

I2 =
(2π)N

det(A)
.

15.2 In this problem and the next we take a closer look at the free field theory.
Consider the one-dimensional, periodic chain of particles with harmonic
coupling between nearest neighbours, and moving in a harmonic potential
with coupling constant m2. The Lagrangian is given by

L = 1

2

∞
�

n=−∞

�

φ̇2
n − (φn −φn+1)2 −m2φ2

n

�

.

We want to find the Hamiltonian H such that
�

[Dφn] e−S =
�

Φi

�

�

�e−(tf−ti)H
�

�

�Φf

�
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where

S =
�tf

ti

L [φn(t )]d t

and the path integral
�

[Dφn] is over all field configurations {φn} compatible
with Φi at ti and Φf at tf.

We use the Fourier transforms

φk =
�

n

φnei kn ; φn =
�2π

0

dk

2π
φk e−i kn .

(a) Show that from the fact that φn is real, it follows that φk = φ∗
−k

, and that
the Lagrangian can be written as

L = 1

2

�2π

0

dk

2π

�

|φ̇k |2 −φ−k

�

m2 +2(1−cosk)
�

φk

�

.

This can be viewed as a set of uncoupled harmonic oscillators with
coupling constant ω2

k
= m2 +2(1−cosk).

(b) In Section 12.4 we have evaluated the Hamiltonian for a harmonic
oscillator. Use the result obtained there to find

H = 1

2

�2π

0

dk

2π

�

π̂(k)π̂(−k)+ φ̂(−k)
�

m2 +2(1−cosk)
�

φ̂(k)
�

,

where the hats denote operators; π̂(k) is the momentum operator conjugate
to φ̂(k) – they satisfy the commutation relation

[π̂(k), φ̂(−k ′)] = i
�

n

ei k(k−k ′)n = 2πδ(k −k ′),

where the argument of the delta-function should be taken modulo 2π.

(c) To diagonalise the Hamiltonian we introduce the operators

âk = 1
�

4πωk

[ωk φ̂(k)+ i π̂(k)];

â†
k
= 1

�
4πωk

[ωk φ̂
†(k)− i π̂†(k)].

Show that
[ak , ak ′] = [ak , a†

−k ′] = δ(k −k ′).

(d) Show that H can be written in the form

H = 1

2

�2π

0
dk ωk (a†

k
ak +ak a†

k
) =
�2π

0
dk ωk

�

a†
k

ak +
1

2

�

.
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15.3 Consider the path integral for the harmonic chain of the previous problem. We
have seen that the Lagrangian could be written as a k-integral over uncoupled
harmonic-oscillator Lagrangians:

L =
�2π

0
dkL (k) = 1

2

�2π

0
dk
�

|φ̇(k)|2 −ω2
k |φ(k)|2

�

.

We discretise the time with time step 1 so that

φ̇(k, t ) →φ(k, t +1)−φ(k, t ).

(a) Show that the Lagrangian can now be written as a two-dimensional Fourier
integral of the form:

L =−1

2

�

d 2q

(2π)2
ω̃2

q |φ(q)|2

with
ω̃2

q = m2 +2(1−cos q0)+2(1−cos q1);

q0 corresponds to the time component and q1 to the space-component.

(b) Show that in the continuum limit (small q), the two-point Green’s function
in q-space reads

�

φqφq ′
�

= 1

m2 +q2
δq,−q ′ .

15.4 [C] The multigrid Monte Carlo program for the φ4 field theory can be
extended straightforwardly to the X Y model. It is necessary to work out the
coarsening of the Hamiltonian. The Hamiltonian of the X Y model reads

H =−
�

〈n,n′〉
J cos(φn −φn′).

In the coarsening procedure, the new coupling constant will vary from bond
to bond, and apart from the cosines, sine interactions will be generated. The
general form which must be considered is therefore

H =−
�

〈nn′〉

�

Jnn′ cos(φn −φn′)+Knn′ sin(φn −φn′)
�

.

The relation between the coarse coupling constants JN N ′ ,KN N ′ and the fine
ones is

JN N ′ =
�

nn′|N N ′

�

Jnn′ cos(φn −φn′)+Knn′ sin(φn −φn′)
�

;

KN N ′ =
�

nn′|N N ′

�

Knn′ cos(φn −φn′)− Jnn′ sin(φn −φn′)
�

;

see Figure 15.5.
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(a) Verify this.

(b) [C] Write a multigrid Monte Carlo program for the X Y model. Calculate
the helicity modulus using (15.97) and and check the results by comparison
with Figure 15.4.

15.5 In this problem we verify that the SOR method for the free field theory
satisfies detailed balance.

(a) Consider a site n, chosen at random in the SOR method. The probability
distribution according to which we select a new value for the field φn in
the heat bath method is

ρ(φn) = e−a(φn−φ̄n )2/2,

where φ̄n is the average value of the field at the neighbouring sites. In the
SOR method we choose for the new value φ′

n at site n:

φ′
n = φ̃n + r

�

ω(2−ω)/a,

where
φ̃n =ωφ̄n + (1−ω)φn

and where r is a Gaussian random number with standard deviation 1. Show
that this algorithm corresponds to a transition probability

T (φn →φ′
n) ∼ exp

�

− a

ω(2−ω)

�

φ′
n − φ̃n

�2
�

.

(b) Show that this transition probability satisfies the detailed balance
condition:

T (φn →φ′
n)

T (φ′
n →φn)

=
exp

�

−a(φ′
n − φ̄n)2/2

�

exp
�

−a(φn − φ̄n)2/2
� .

15.6 The Wilson loop correlation function for compact QED in (1+1) dimensions
can be solved exactly. Links in the time direction have index µ = 0, and the
spatial links have µ= 1. We must fix the gauge in order to keep the integrals
finite. The so-called temporal gauge turns out convenient: in this gauge, the
angles θ0 living on the time-like bonds are zero, so that the partition sum is a
sum over angles θ1 on spatial links only. Therefore there is only a contribution
from the two space-like sides of the rectangular Wilson loop. The Wilson loop
correlation function is defined as

W (C ) =
�2π

0

�

n,µ dθµ(n)eβcos
�
�

n;µν θµν(n)
�

ei
�

(n,µ)ǫC θµ(n)

�2π
0

�

n,µ dθµ(n)eβcos
�
�

n;µν θµν(n)
� .
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A plaquette sum over the θ angles for a plaquette with lower-left corner at n

reduces in the temporal gauge to:
�

n;µν
◦ θµν(n) = θ1(n0,n1)−θ1(n0 +1,n1).

(a) Show that in the temporal gauge the Wilson loop sum can be written as

�

(n,µ)ǫC

θµ(n) =
�

(n;µν)ǫA

�

n;µν
◦ θµν(n)

where A is the area covered by the plaquettes enclosed by the Wilson loop.

(b) Use this to show that the Wilson loop correlation function factorises into a
product of plaquette-terms. Defining

θP (n) =
�

n;µν
◦ θµν(n),

where P denotes the plaquettes, we can write:

W (C ) =
�
�

P dθP exp
�

βcosθP + iθP

�

�
�

P dθP exp
�

βcosθP

� .

(c) Show that this leads to the final result:

W (C ) =
�

I1(β)

I0(β)

�A

where In(x) is the modified Bessel function and A is the area enclosed by
the Wilson loop.
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