12
Quantum Monte Carlo methods

12.1 Introduction

In chapters 1 to 4 we studied methods for solving the &timger equation for
many-electron systems. Many of the techniques described there carytmv
other quantum many-particle systems, such as liquid helium, and the protns an
neutrons in a nucleus. The techniques which we discussed there weesdno

all of a mean-field type and therefore correlation effects could not bentak
into account without introducing approximations. In this chapter, we censid
more accurate techniques, which are similar to those studied in Chapter 10 and
which are based on using (pseudo-)random numbers — hence the kEmte
Carlo’ for these methods. In Chapter 10 we applied Monte Carlo techniques
to classical many-particle systems — here we use these techniques fangtudy
quantum problems involving many particles. In the next section we shallsee h
we can apply Monte Carlo technigues to the problem of calculating the quantum
mechanical expectation value of the ground state energy. This is usedentor
optimise this expectation value by adjusting a trial wave function in a variational
type of approach, hence the nareiational Monte Carlo(VMC).

In the following section we employ the similarity between the $dimger
equation and the diffusion equation in order to calculate the properties of a
collection of interacting quantum mechanical particles by simulating a classical
particle diffusion process. The resulting method is catlé@tiision Monte Carlo
(DMC).

Then we describe the path-integral formalism of quantum mechanics, which
is a formulation elaborated by Feynman, based on ideas put forward by
Dirac! in which a quantum mechanical problem is mapped onto a classical
mechanical system (containing however more degrees of freedom)clakgscal
many-particle system can then be analysed using methods similar to those
employed in Chapter 10. This is called thath-integral Monte Carlomethod
(PIMC).
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The last section of this chapter is dedicated to a stochastic technique, based
on diffusion Monte Carlo, for diagonalising the transfer matrix of a lattice spin
model on a strip, for cases where the matrix size renders even sparse matr
diagonalisation methods unusable.

Some important applications of quantum Monte Carlo methods are to the
electronic structure of moleculés,to dense helium-fout,* and to lattice
spin-systems. The cited literature also contains detailed accounts of the various
methods.

12.2 The variational Monte Carlo method

12.2.1 Description of the method

In Chapter 3 we studied the variational method for finding the ground state an
the first few excited states of the quantum Hamiltonian. This was done by
parametrising the wave function —in a linear or nonlinear fashion — and thdindj

the minimum of the expectation value of the energy in the space of parameters
occurring in the parametrised (trial) wave function. We described in sotiad de
how this calculation can be carried out if the parametrisation is linear, andvee h
seen in Chapter 4 to 6 that the choice of basis functions in the linear paratetris

is crucial for the feasibility of the method. Calculating the expectation value
of the energy involves integrals over the degrees of freedom of thectoheof
particles, which can only be carried out if the basis does not includelatores
(single-particle picture) and if parts of the integration can be done analytitca
example by using Gaussian basis functions.

In this section we consider the variational method again, but we want to relax
some of the above-mentioned restrictions on the trial wave functions andatelc
the high-dimensional integrals using Monte Carlo methods, which are \Vargnt
for this purpose as we have seen in Chapter 10. This is called the varidfionte
Carlo (VMC) approach. It should be noted that for some simple atoms, asich
hydrogen and helium, the integrations can often be carried out analyticailirg
direct numerical integration (as opposed to MC integration) — howevegriétare
many more electrons, these methods are no longer applicable.

Let us briefly recall the variational method in the form of an algorithm:

1. Construct the trial many-particle wave functign (R), depending on th&
variational parameters = (a1, ...,0s). ¢ depends on the combined position
coordinater of all theN particlesR=r1,...,ry.
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2. Evaluate the expectation value of the energy

(E) = (¢ Hly ) (12.1)

(W)~

3. Vary the parameters according to some minimisation algorithm and return to
step (i).

The loop stops when the minimum energy is reached according to some criterion
It is the second step in this algorithm which we consider in this section. Hoyweve
below, we shall describe a variational method in which the parametesase
adjusted according to some numerical scheme within the Monte Carlo simulation.
It turns out that in realistic systems the many-body wave function assumes ve
small values in large parts of configuration space, so a straightforwaoggure
using homogeneously distributed random points in configuration spacarnsl bo
fail. This suggests that it might be efficient to use a Metropolis algorithm inlwhic
a collection of random walkers is pushed towards those regions of coatiign
space where the wave function assumes appreciable values. Supgtose tan
evaluateH Y for any trial functionysr, which we shall always assume to be real,
and let us define
EL(R) = Hur(R) (12.2)
¢r(R)
(we omitthe -dependence afir). E_ (R) is called thdocal energy it is a function
which depends on the positions of the particles and it is constgnti$ the exact
eigenfunction of the Hamiltonian. The more closgly approaches the exact wave
function (apart from a multiplicative constant), the less strongly Eillvary with
R.
The expectation value of the energy can now be written as

_ JdREZ(REL(R)
JARYE(R)

Let us now construct a Metropolis-walk in the same spirit as in ordinaryt®on
Carlo calculations, but now with a stationary distributp(R) given by

_ ¥#{R
p(R) = TR (12.4)

The procedure is now as follows.

(E) (12.3)

PutN walkers at random positions;
REPEAT
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Select next walker;

Shift that walker to a new position, for example by moving one
of the patrticles in the system within a cube with a suitably
chosen sizé;

Calculate the fractiop = [ (R) /@ (R)]?, whereR is the new and

Rthe old configuration;
If p < 1the new position is accepted with probabilpy
If p> 1 the new position is accepted,;
UNTIL finished.

The expectation value of the local energy is now calculated as an avaragthe
samples generated in this procedure, excluding a number of steps agjtheiig,
necessary to reach equilibrium. The decision to stop the simulation is base& on th
precision achieved and on the available processor time.

The algorithm should work in principle with a single walker. However, cleanc
are that this walker gets stuck in one favourable region surroundecdatiets
which are difficult to overcome. Using a large collection of walkers redubis
effect.

12.2.2 Sample programs and results

We demonstrate the VMC approach with some simple programs. Here and in the
rest of this chapter, when dealing with many-patrticle systems, we shathassits
of mass, distance and energy to be such that the kinetic energy operetios
the Schodinger equation as [1°/2.

We start with the harmonic oscillator in one dimension, described by the
Hamiltonian (in dimensionless units):

2
Hy(x) = [_;:xz + ;xz] Y(x). (12.5)

The exact solution for the ground state is given by(ex¢/2) with energyEg =
1/2; we shall use the trial function efpax?). The exact solution lies therefore in
the variational subspace. The local energy is given by

1
EL=a+x (2—20{2). (12.6)

For a = 1/2 the local energy is /2, independent of the position and we shall
certainly find an energy expectation valug2lin that case (this might happen
even when the program contains errors!). The crucial test is whatlseenergy
expectation value is a minimum as a functioroofin table 12.1 we show that this
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Table 12.1: Variational Monte Carlo energies for the harimoscillator and the hydrogen
atom and the helium atom for various values of the variatipagameters. In each case,
400 walkers have been used and 30000 displacements perwealieattempted. The first
4000 of these were removed from the data to ensure equitibriine expectation valug)

of the ground state energy is given, together with the vagamthis quantity, vaxE)). For
the harmonic oscillator, also the analytical values foreghergies and variance are given
(Evar and varE), ).

Harmonic oscillator
a (E) var((E)) Ev var(E),
0.4 051241) 0.025215) 0.5125 0.0253125
0.45 0502764) 0.005562) 0.50278 0.00557
1/2 1/2 0 1/2 0
0.55 0502326) 0.004541)(1) 0.5022727 0.0045558
0.6 050841) 0.01684) 0.508333 0.0168056

Hydrogen atom Helium atom

a (E)  var((E)) a (E) var((E))
0.8 -0.4796(2) 0.0243(6) 0.05 —2.87134) 0.17492)
0.9 -0.4949(1) 0.0078(2) 0.075-2.87534) 0.1531(2)
1.0 -1/2 0 0.10 -2.877Q3) 0.136Q02)
1.1 -0.4951(2) 0.0121(4) 0.125-2.87804) 0.12232)
) )

) )

) )

)

1.2 -0.4801(3) 0.058(2) 0.15 —2.87783) 0.11142
0.175 -—2.8781(3) 0.10282
0.20 —2.87674) 0.09682
0.25 —2.874610) 0.08832

is indeed the case. We also show the variance of the energy. This quaititity w
be small ifE_ is rather flat, and this will be the case whgr is close to the exact
ground state: the closgr is to the ground state wave, the smaller the variance, and
this quantity reaches its minimum value at the variational minimum of the energy
itself. Again, in this particular case where the trial wave function can beegual

to the exact ground state, the variance becomes zero. From the table thatsthe
variance decreases indeed to 0 when the ground state is approatieegistingly,

for this simple case, it is possible to calculate the expectation value of theyenerg
as a function ofr by integrating the local energy weighted tm% The Gaussian
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form of the trial wavefunction makes the integral solvable with the result

1 1
E,=-a+—. 12.7
V=5 + 8q ( )
The same can be done for the variance with the result
~ (1—-40?)?
var(E), = 3902 (12.8)

The Monte Carlo results match the analytical values as is clear from the Fdbde.
in table 12.1 we show results for the hydrogen atom with the Hamiltonian

H=--02-=. (12.9)

The exact ground state with energy= —1/2 is given as™"; we take variational
trial functions of the forme~ 9", so that the ground state is again incorporated in the
variational subspace. Although we could consider the present pradesnone-
dimensional one by using the spherical symmetry of the potential and thedyrou
state wave function, we shall treat it here as a fully three-dimensionhlgumoto
illustrate the general approach. For this case, the analytical values aVéhage
local energy and variance can also be calculated. This is left as arisextor the
reader.
The local energy is given by

EL(r):—%—}a <a—f). (12.10)

Itis seen from table 12.1 that the energy is minimal at the ground state ant$that
variance vanishes there too.

Finally we consider the helium atom, which we have studied extensively glread
in Chapter 4 and 5. Constructing good trial functions is a problem on its dveme-
we shall use the form:

W(re,ro) = e Fe 22eaman (12.11)

whererio = |r; — rp|.  This function consists of a product of two atomic
one-electron orbitals and a correlation term. The local energy now hésrthe

1

ri2(1+arqp)?

1 1 1
— — +— (12.12
ra(l+ar2)®  4(1+ar)*  ri ( )

EL(ri,r2) =—4+(Ff1—F2) - (r1—r2)
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With F we denote a unit vector along andr is the distance between thetwo
electrons. Energies and variances are also displayed in table 12.1.afihece
does not have a sharp minimum for the same value a$ the energy. The reason
is that most of the variance is due to the trial wave function not being exeset fer

the best value ofi. The optimum value of the energy,2.8781+ 0.0005 should

be compared with the Hartree-Fock value-e2.8617 a.u. and the DFT value of
—2.83 a.u, and with the exact value-6£.9037 a.u. The VMC value can obviously
be improved by including more parameters in the wave function. The waeégdan

is apparently not perfect. One of its deficits can be appreciated by evimgjdhe
case where one of the electrons is far away from the nucleus and theslgttteon.
Then the trial wave function depends on the position of this particle similar to
the wave function of the helium ion,i.e. it is the asymptotic wave function for an
electron in the field of @ = 2 nucleus. In reality however, the wave function should
‘see’ a charg& = 1 as the other electron shields of one unit charge.

It is possible to adjust the value of the paramarsn these simulations ‘on
the fIy’.6 To this end, we need a minimum finder. The most efficient minimum
finders use the gradient of the function to be minimised (see Appendix Als Th
is a problem, as a finite difference calculation of the gradient is bound tafiil:
derivatives of stochastic variables are subject to large numericaketfmwever,
from the analytic derivative of the wave function with respeatriave can sample
this derivative over the population of walkers. From (12.3) we see that

dE dinyr dinygr
Sol(et) ()

Using a simple damped steepest decent method:

dE
Onew= Oold — Y (da) ) (12.14)
old

the method then finds the optimal value (and therefore also the energy)iidris
method works remarkably well for the harmonic oscillator, where,starting fro
a = 1.2, the correct valuer = 0.5 is found in a small fraction of the time needed
for accurately evaluating one of the points in Table 12.1. However, theesadn
this particular case is partly due to the exact solution being in the family of sadution
considered. The method is generalised straightforwardly to more paratriéeteas
been applied sucessfully to electrons in quantum 8ots.

The reader is invited to write the programs described and check the redhlts w
those given in table 12.1.
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12.2.3 Trial functions

The trial wave function for helium, Eq. (12.11), is the two-particle versibthe
general ground state trial wave function used in quantum Monte Carlolattns
of fermionic systems:

N
LIJ(XL <o 7XN) = qJAS(XL <o 7XN) exp [1 ' z Cp(rij )] . (1215)

2 i,]=1

Was is the Slater-determinant (see Chapter 4) arid a function which contains
the two-patrticle correlation effects. For identical bosons, all the minusssigthe
determinant are replaced by pluses. The particular form we chose ielthmttase
is a simple form of a class called Fadastrow wave functiorisinclusion of three
and four point correlations is obviously possible. We shall not go into tbielgm
of finding the best Slater determinants apdunctions but restrict ourselves to
a short discussion of the requirements which we can derive for speaititie
configurations — these are the ‘cusp conditions’: boundary conditiatisfied at
the points where the potential diverges. Near these points the kinetic temtipb
energy contribution of the Hamiltonian are both very large, and they shanickt
out for a large part. This leads to large statistical fluctuations which andex/o
by respecting the cusp conditions. In the next section we shall see teatdbsp
conditions are essential for trial wave functions used in the DMC method. We
have dealt already with a similar problem in the Chapter 2 of this book, when
we found appropriate boundary conditions for the numerical solutioneofetial
Schibdinger equation with a Lennard-Jones potential, which diverges $yrahg
r = 0. Now we consider singularities in the Coulomb potential.

In the helium atom, the potential diverges when one of the electrons ajiy@®a
the nucleus, or when the electrons are close to each other. Thad8aer equation
can be solved analytically for these configurations since the Coulomb pdtentia
dominates all other terms except the kinetic one. Suppose that one of ttreredec
labelledi, is very close to a nucleus (which we take at the origin) with chZrde
that case the Scbdinger equation becomes approximately

|:—;|:||2—r2:| lll(l’l,...,l’N):O. (1216)

Writing out the kinetic energy in spherical coordinates of particlee arrive at a
radial Schodinger equation of the fornr & r;)

@ 2d 22 10+
dr2 rdr r r2

] R(r) =0. (12.17)
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If, as is usually the case, the wave function is radially symmetrig far r; small,

we have exclusively ah= 0 contribution, and the two terms containing the factor
1/r must cancel (the first term does not contribute for a function which islaeg
at the origin). FoIR(0) # O this leads to

1dR
Rdr — —-Z, r=0; (12.18)
so thatR(r) = exp(—Zr).

Forl > 0, the radial wave function is written in the fomip(r) wherep does not
vanish at = 0. Analysing this in a way similar to thHe= 0 case leads to the cusp
condition

L dp(r) _ Z (12.19)
p(r) dr 41
Note that this form is the same as (12.18) if we pst0.

Another cusp condition is found for two electrons approaching eachr.othe
Considering the trial wave function of the helium atom, Eq. (12.11), we s#e th
it is the dependence on the separatiobetween the two electrons which must
incorporate the correct behaviour in this limit. The resulting radial equation f
ther dependence is the same as for the electron—nucleus cusp exceptfa the
potential being replaced by (the Coulomb repulsion between the two electrons),
and the kinetic term being twice as large (because the reduced mass of the two
electrons is half the electron mass):

> 4d 2 1041
27t g~z |RN=0 (12.20)

The cusp condition, written in terms pir) = r'R(r), is therefore

1 dp(r) 1
p(r) dr — 2(1+1) (12.21)

The right hand side reduces t@2lin the usual case of an s-wave functibr=(0).

For like spins, the value of the wave function must vanish if the particlesoappr
each other; therefore the wave function with lowest energy is a p-stdt¢han
right hand side will reduce to 1/4. For a general system, containing manewloa
electrons, we have this cusp condition for each electroni palitis recommended

to have a look at problem 12.5 to see how cusp conditions are implemented in
practice.
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12.2.4 Diffusion equations, Green’s functions and Langevin equations

In the following sections we shall discuss several QMC methods in which the
ground state of a quantum Hamiltonian is found by simulating a diffusion psoces
In the next section for example, we shall use such a simulation to improve on the
variational method described above. In this section, we give a brieVieveof
diffusion and the related equations.

Consider a one-dimensional discrete axis with sites located, atith integem.
We place a random walker on a site, and this walker jumps from site to site with
time intervalsh. The walker can only jump from a site to its left or right neighbour.
Both jumps have a probability to occur, and the walker remains at the current
position with probability - 2a. This is clearly a Markov process as described in
Section 10.3. We are interested in the probabjify,t) to find the walker at site
X = naat timet = mh, wheren andm are both integer. This probability satisfies the
master equation of the Markov process:

~ aaZazp(X7t) )

X2

(12.22)
For smallh, the left hand side can be writtenta®p/dt), and definingy = a?a /h,
we can write the continuum form of the master equation (for sa)alk

Ip(xt) _ *p(xt)
= . 12.2
ot o (12.23)
This equation is called thdiffusion equation it describes how the probability
distribution of a walker evolves in time. It may equivalently be interpreted as the
density distribution for a large collection of independent walkers.

Consider the following function:

p(x,t+h)—p(xt) =a[p(x+at)+p(x—at)—2p(xt)]

G(x,y;t) = e (Y)?/(4n) (12.24)

5

This function has the following properties:

e Considered as a function gfandt, keepingx fixed, it is a solution of the
diffusion equation fot > O.

e Fort — 0, G reduces to a delta-function:

G(x,y;t) = 0(x—y) fort — 0. (12.25)
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G is called theGreen's functionof the diffusion equation. This function can be
used to write the time evolution of any initial distributigrix, 0) of this equation
in integral form:

p(yt) = [ dxGx yit)p(x,0), (12.26)

which can easily be checked using the propertie§.ofnspection of the Green’s
function shows that it is normalised, that isdy G(x,y;t) = 1, independent ok
andt.

The Green’s function can be interpreted as the probability distributioniafjtes
walker which starts off at positior att = 0. We can usés to construct a new
Markov process corresponding to the diffusion equation. We discrbstme in
stepsit. We start with a walker localised atatt = 0. Then we move this walker
to a new positiory at timeAt with probability distributionG(x,y; At). From this,
we move the walker to a new positiaat time 22t with probability distribution
G(y,z At). We have therefore a Markov process with transition probability given
by G:

Tat(X = y) = G(X,y; At). (12.27)

Using the properties of the Green’s function it can be shown that the dktaile
balance condition for the master equation for the Markov process leade to th
integral form (12.26), so that the Markov process indeed models thasudiff
process described by (12.23) (check this). The difference bettheeprocess and

the previous one on the discrete lattice, is that we now use the continuum solution
of the former version, which should be much more efficient, as a single step in
the continuum diffusion process represents a large number of stepsdisthnete
diffusion process. The Markov process described by (12.27) eanimmmarised by

the equation

X(t+At) = x(t) + nV/At, (12.28)
wheren is a Gaussian random variable with variange 2
P(n) = L gy (12.29)
VAT

This result can be understood by realising that a step in the Markovgs¢t2.27)
is distributed according to a Gaussian with wigtByAt. In this form, the process is
recognised as a Langevin equation for discrete time. Note that a randonmtusme
rather than a random force is added at each step, in contrast to thevirang
eqguation discussed in Section 8.8.
The general form of the diffusion equation is
Jp

2 Zp(x,t), (12.30)
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where Z is a second order differential operator. The formal solution of this
equation with a given initial distributiop(x,0) can be written down immediately:

p(x,t) =€&<p(x,0) (12.31)

but as this involves the exponential of an operator (which is to be coesideran
infinite power series), it is not directly useful. Using Dirac notation, theeG'se
function can formally be written as

G(x,y;t) = <X\et$ \y> (12.32)

which indeed satisfies the equation (12.31) as a functiop afidt, and which
reduces tod(x —y) for t = 0. The diffusion equation can only be used to
construct a Markov chain if the Green’s function is normalised, in theestret
Jdy Gx,y;t) =1, independent of. This is not always the case, as we shall now
see.
A particular diffusion equation which we shall encounter later in this chapter
op 13%p(x,1)
— =——a—"-V . 12.33
a.[ 2 axz (X)p<X7 T) ( )
This looks very much like the one-dimensional time-dependent &Batger
equation for a zero-mass patrticle; in fact, this equation is recovered wken
continue the time analytically into imaginary tinre= it — we user for imaginary
time. Using (12.31), we can write the solution as

p(x 1) =e*V)p(x,0) (12.34)

where K is the kinetic energy operatdt = p?/2 = —1/2(9%/9x?) (p is the
momentum operatgp = —i(d/0x) of quantum mechanics). The exponent cannot
be evaluated because the operatd@ndV do not commute. However, we might
neglect CBH commutators — this is only justified wheis small. To emphasise
that the following is only valid for smalt, we shall use the notatiakr instead of
7. We have

e—AT(K+V) — e—ATKe—ATV + ﬁ(ATZ) (1235)

where the ordeAt? error term results from the neglect of CBH commutators.
To find the Green’s function explicitly, we must find the matrix element of the
exponential operator on the right hand side. The term involving the pdténtia
not a problem as this is simply a functionxf It remains then to find the matrix
elements of the kinetic operator:

Gin (X, Y;AT) = <x‘e‘“f’z/2‘ y> (12.36)
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wherep'is the momentum operator — we have used the caret ~ to distinguish the
operator from its eigenvalue.

The Green'’s function can be evaluated explicitly by inserting two resolutibns
the unit operator of the fornfidp |p) (p| and using the fact that

1 .
X|p) = ——ePX h=1). 12.37
(p) = =™ (=1 (12.37)
As the kinetic operator is diagonal in therepresentation, the matrix element is
then found simply by performing a Gaussian integral — the result is

1 o ex)?(ann
\/ﬁe . (12.38)
This form is recognised as the Green function of the simple diffusion equatio
indeed our imaginary-time Sabdinger equation reduces to this equatiorvfar 0,
and therefore the kinetic part of our Green'’s function should preclselgqual to
the Green’s function of the simple diffusion equation. We have deriveddis
explicitly here, because we need to find the Green'’s function for a manplaated
type of diffusion equation along the same lines below.

The full Green’s function for the diffusion equation (12.33) reads:

Gkin (X, Y;AT) =

G(X,Y;AT) = Gkin (X, Y;AT)e 2V 4 g(AT?). (12.39)

Unfortunately, the term involving the potential destroys the normalisation of the
full Green’s function, and this prevents us from using it to constructaakigyv
chain evolution, which is convenient, if not essential, for a successfullation

as we shall see later. We can make the transition rate Markovian by normalising
it — this can be done by multiplying the Green’s function by a suitable prefactor
exp(TEr). Of course we do not know beforehand what the value of this prefacto
is, but we shall describe methods for sampling its value in Section 12.3. The ne
normalised, Green’s function is no longer the Green'’s function fortmuél2.33),

but for a modified form of this equation, in which the potential has been dtfge

an amounkr: ,

op 10°p(x,1)

T2 o V(X) —Er]p(x,T). (12.40)
If we chooseET such that the Green's function is normalised, it describes a Markov
process, hence there will be an invariant distribution. This invariantldligion is

determined by Eg. (12.40), which for stationary distributions reduces to

_10%p(x)
2 0x?

+V(X)p(x) = Erp(X), (12.41)



12.2. The variational Monte Carlo method 411

which is the stationary Scbdinger equation!

For many problems, it is convenient to construct some Markovian diffusion
process which has a predefined distribution as its invariant distributias.tdims
out to be possible, and the equation is calledRbkker-Planck(FP) equation. It
has the form

dp(x,t) 10 [0
3t~ 29x [é’x - F(x)] p(xt). (12.42)
The ‘force’ F(x) is related to the invariant distributign(x) — the relation is given
” (x)
1 dp(x
F(X) = 500 dx (12.43)
It can easily be checked that(x) satisfies (12.42) when the time derivative
occurring in the left hand side of this equation is put equal to zero.
The Green’s function can be found along the same lines as that of the kinetic
part of the Green’s function for the imaginary time Siatinger equation. We must
work out

G(x,y;t) = <x‘e—mf’[f’—‘”*”/2‘ y). (12.44)

We again separate the exponent into two separate terms, one contaamdghe
otherp, at the expense of afi(At?) error. Calculating Gaussian Fourier transforms
as before, we obtain the result:

A = L e lyxFont/22/(2nn)

G(x,y; At) me : (12.45)
Note that this expression is a first order approximatioAtirof the exact Green’s
function. This is normalised, and we can therefore use it again for catisiy a
Markov chain. This is done by moving the random walker first from its ofsltgm
x to the positionx 4+ F(x)At/2 and then adding a random displacemgrfAt,
wheren is drawn from a Gaussian distribution with a variance 1 [see Eq. (12.29)].
In formula, the method reads

X(t+At) = X(t) + AtF [x(t)] /2+ n VAL, (12.46)

so itis a discrete Langevin equation with ‘forde!

We end this section with a few remarks. First, all results can be extended
straightforwardly to higher dimensions. UsingM-8imensional variabl® instead
of the one-dimensional variable(R denotes the positions of a set of particles in
three dimensions as usual), the Green’s function of the simple diffusicatiequ
Eqg. (12.23) withy=1/2 is

1 _(R_R)?2
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The Green’s function of the Fokker-Planck equation (12.42) becomes

1 2
At)— & o [R-R-AtF(R)/22/(20t)
Gan(R R;At) E t)3N/ze , (12.48)
whereF(R) is a three-dimensional vector, given by
F(R) = Oro(R)/P(R). (12.49)

You might have been surprised by the way in which the exponential congainin
noncommuting operators was split in Eq. (12.35). After all, the following splitting

e ATVAHK) _ o= BTV/25-ATK o-ATV/2 | ﬁ(Ar?’) (12.50)

is more accurate — you can check that the first order CBH commutator eanish
hence thes (AT?) error. The reason why we use the simpler splitting (12.35) is that
diffusion steps are carried osticcessivelyhence the rightmost term in the right
hand side of (12.50) at one step combines with the leftmost term at the ngxt ste
so that the total effect of the more accurate splitting is reduced to a difffirsn
and final step. This difference is, however, of the same order of maignés the
accumulated error of the sequence of steps, and therefore it dogsynoff to use
(12.50).

12.2.5 The Fokker-Planck equation approach to VMC

The VMC method described in Section 12.2.1 and 12.2.2 has an important
disadvantage: typical many-particle wave functions are very small in [zags
of configuration space and very large in small parts of configurationespalis
means first of all that we might have a hard job in finding the regions where
the wave function is large and secondly that attempted moves of walkersafrom
favourable region (where the wave function is large) will be rejectednvthey
move out of that region. Having a substantial fraction of rejected movearioop
any Metropolis Monte Carlo scheme, and we could live with that if there did not
exist a more efficient approach, based on the Fokker-Planck equigtsznibed in
the previous section.

In this method we try to sample the functipriR) = ¢2(R) rather than the trial
function ¢ (R) itself, that is, we use

F = 20r¢r(R)/ 1 (R) (12.51)

in the FP equation.

The distributionp(R,t) can be sampled by simulating a diffusion process. The
algorithm is close to that of ordinary VMC. Now we let a collection of walkers
diffuse with probabilities given by the Green'’s function (12.45):
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PutN walkers at random positions;
REPEAT

Select next walker;

Shift that walker from its current positidRto R+ F(R)At/2;

Displace that walker by an amount/At, where is a

random vector with a Gaussian distribution[see (12.29) and
(12.28)];

UNTIL finished.

We see that there is no acceptance/rejection step; this causes the gaitien®ffi
when using the FP approach.

Note that we have made a time-step error of otde)?. Itis possible to eliminate
this error by combining this Langevin approach with a Metropolis procedihie
point is that we know the form of stationary distributipn(it is the square of the
trial function ¢rr), and the Langevin process leads to a distribution which is close
to, but not exactly equal to this distribution. The Metropolis algorithm cae giv
us the desired distribution by acceptance/rejection of the Langevin steps, which
themselves are considered as trial moves in the Metropolis algorithm. Rgferrin
back to Section 10.3, we call the transition probability of the Langevin equation
wrr = G(R,R;At), whereG is given in (12.48). This is not symmetric BandR
asF depends only ok, and therefore we have to use the generalised Metropolis
algorithm, described at the very end of Section 10.3. The Langevin triaé risov
accepted with probability mi, grr ), where

g = SRRAR) (12.52)

wrrP(R)
Note that the fractionurr/wrg is in equilibrium approximately equal to the ratio
p(R)/p(R) —if no time step error was made in constructingk, they would have
been exactly equal — thereforggr is always close to 1. The acceptance rate is
therefore always high whefit is taken small, and the method is very efficient.
The Metropolis acceptance/rejection step is merely a correction for the time step
discretisation error made in the Langevin procedure.

The implementation of the algorithm is straightforward. The resulting energies
must be the same as for the standard VMC method, however, the erroarbars
smaller. As an example, an MC simulation for the harmonic oscillator using 300
walkers which perform 3000 steps aod= 0.4, yields for the energy expectation
in the ordinary VMC program valug = 0.51+ 0.03, to be compared witk =
0.515+0.006 in the Fokker-Planck program.

Variational Monte Carlo has the advantage that it is simple and straightfdrwar
An important disadvantage is that it relies on the quality of the trial functiom;de
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subtle but important physical effects are sometimes neglected when thaptare
taken into account when constructing the trial function.

12.3 Diffusion Monte Carlo

12.3.1 Simple diffusion Monte Carlo

The second guantum Monte Carlo method which we consider is the so-called
diffusion or projector Monte Carlo method, abbreviated as DMC. This method
does not use variational principles for obtaining ground state propdstieas we

shall see in the sequel, the convergence rate of the practical verdiois ofethod
relies heavily on the accuracy of the trial functions. The idea of this methed h
already been sketched in Section 12.2.4. We use the imaginary time form of the
time-dependent Scidinger equation. This is a diffusion equation with a potential.
We use the Green’s function in the ‘normalised’ form, i.e. with the normalisation
factor exg—ATET) present:

1

= o (RR)Y/(m) | O(AT?). (12.53)

G(R R;AT) = e ATIV(R-E]
21AT

This Green'’s function is a short-time approximation of the imaginary-time operato
exp—T1(H + E7)]. If we resolve this operator in its eigenstat@s), we obtain

g T(H-Er) _ Z |%>e—T(En—ET)<qh|, (12.54)
n

For large 7 the ground state energifc dominates in the sum by a factor
exp—1(E1 — Eg)]; therefore it acts as a projector onto the ground state (for large
enough times).

As we have the explicit form of the time evolution operator at our dispodgl on
in a short-time approximation, we have to perform many short time steps before
the distribution will approach the ground state wave function.

In the simulation, a collection of walkers diffuses through configurationespac
Every diffusion step consists of two stages: a diffusion step am@uaching step
In the diffusion step, the walkers are moved to a new position with a transition
rate given by the diffusive part of the Green’s function, i.e. the pag t the
kinetic energy. The term involving the potential is dealt with in the second stage
Suppose we would assign a weight to each walker, then the effect obtbetial
term could be taken into account by multiplying this weight for a walker which ha
arrived at a positioiR by a factor exp—AT[V(R) — E7]}.T It turns out that this

fIt is also possible to multiply the weight by ekpt[(V(R) + V(R))/2 — Et]}, which
corresponds to the symmetric distribution of the potential terms in the Graerction as in (12.50).
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procedure is not very efficient. In the end quite a few walkers might hreoxesd to
unfavourable regions and represent small weight, but they requinglarsamount
of computational effort as the more favourable ones. This problem ivesdy
encountered in Section 10.6. More efficient would be to use computatidoa ef
proportional to the significance of the region probed by a particular walkigis

is possible, by a ‘birth and death’, or ‘pruning and enrichment’ (Secti@i)lor
branchingprocess: poor walkers die, favourable ones give rise to new walkers
More precisely, if a walker moves from a poiRtto a new pointR, we calculate
q=exp{—At[V(R)—Er]}. If < 1, the walker survives with a probabilityand
dies with probability +-q. If g > 1, the walker gives birth to eithég— 1] or [g] new
ones afR, where[q] represents the integer part (truncation)jofThe probability
for having[g] new walkers is given by — [g], and[q— 1] new walkers will come
into existence with the complementary probability 1g) — g. An efficient way of
coding this is to add a uniform random numbdetween 0 and 1 tq: fors=q-+r,

[ new walkers are created;[d = 0 then the walker is deleted.

Finally, we must specify hovgr is found. Remember that this value is ideally
chosen such as to normalise the overall transition rate in the process. Such
is necessary to prevent the population from growing or decreasindilgtea
growing population would cause a steady increase in the computer time per
diffusion step, whereas a decrease leads to bad statistics, if not aimgnish
population! The energgr is in fact determined by keeping track of the change in
population and adjusting it at each step in order to keep the population sThkele
average value dEt after many steps will then converge to the ground state energy
as we have already seen in Section 12.2.4. Suppose we have a target ofivib
walkers in our simulation and that after the last branching step their actorddaTu
is M, then we adjusEr as

M
Er=Ep+aln <M> (12.55)

whereEy is close to the ground state energy (our ‘best estimate’),cardlsome
small parameter.
In an algorithmic form, the resulting procedure can be presented as follows

Put the walkers at random positions in configurational space;
REPEAT
FOR all walkers DO
Shift walker from its positiorR to a new positiorR
according to the Gaussian transition probability (12.24);
Evaluateq = exp{—At [V(R) — ATEr]};
Eliminate the walker or create new oned4t



416 Quantum Monte Carlo methods

depending ors = q+r, wherer is random,
uniform between 0 and 1;
END FOR;
UpdateEr;
UNTIL finished.

The major difference with the variational Monte Carlo method described in the
previous section is that the present method does not rely on a trial furantisn
therefore the results have no systematic error due to the trial function faing
general) not exact. There is, however, an error due to the fact tadiawe split
the time evolution operator into two parts, one depending on the kinetic enaigy a
the other on the potential, by neglecting Campbell-Baker-Haussdorf commsutato
By reducingAt we can make this error arbitrarily small, but the convergence speed
will be reduced accordingly. In Section 12.3.3, we shall describe a ldetiso
algorithm to correct for the discretisation error.

The population itself should represent the ground state wave function.a Fo
one-dimensional problem (or a radially symmetric three-dimensional prolbfésn)
can be checked by constructing a histogram in which the frequencies Wit w
the various positions are occupied are recorded. Below we shall giwe sesults
of DMC simulations for the harmonic oscillator and the helium atom.

The DMC procedure outlined here might fail in some cases. The distribution
of walkers can only represent a density which is positive everywhEnerefore,
it can sample the ground wave function only if the latter is everywhere pesitiv
Fortunately, the ground state of a boson system is indeed everywhsit&zgao
However, in the case of fermions this is no longer the case — moreoverr¢ea's
function is no longer positive in that case and it is not clear how to pertban
diffusion, as the transition probability should be positive. This is calledetraion
problem We shall come back to this later. Another problem arises when the
interaction potential assumes strongly negative values. This will be dextiiss
some detail in the next section and then we shall consider a refinementafiGe
which is not susceptible to this problem.

12.3.2 Applications

We apply the DMC procedure first to the three-dimensional harmonic oscillato
The exact ground state wave function is given by

W(r) = (an)g/ze‘rz/z; (12.56)

the energy is A2 (in dimensionless units). It should be noted that the probability
distribution for finding a walker at a distancefrom the origin is given by the
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Figure 12.1: Ground state wave function (tiné for the three-dimensional harmonic
oscillator as resulting from the DMC calculation (dots) qmared with the exact form,
scaled to match the numerical solution best.

wave function times?, because the volume of a spherical shell of thickraiss
is 2rr2dr. For an average population of 300 walkers executing 4000 steps and a
time stept = 0.05, we findEg = 1.506+ 0.015, to be compared with the exact
value 1% The distribution histogram is shown in Figure 12.1, together with the
exact wave function, multiplied by? and scaled in amplitude to fit the DMC
results best. Ground state energy and wave function are calculated vtelggad
accuracy. Note that these results are obtained without using any krgenvbédhe
exact solution: the diffusion process ‘finds’ the ground state by itself.

Next we analyse the helium atom using the diffusion Monte Carlo method. This
turns out less successful. The reason is that writing the time evolutiontopas
a product of a kinetic and potential energy evolution operator

g AT(K+V-Er) _ oMK g-0T1(V-Er) 4 5(AT2) (12.57)

is not justified when the potential diverges, as is the case with the Coulomitipbte
atr = 0. Formally, this equation is still true, but the prefactor of #EAT?)
term diverges. However, even if the potential does not divergedmigs strongly,
the statistical efficiency of the simulation is low. This is due to the fact that if a
walker moves to a very favourable region, it will branch into many copidgeyT
are however all the same, and together they form a rather biased santpke of
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distribution in that region. It requires some time before they have diffused a
branched in order to form a representative ensemble. Frequent@oce of such
strong branching events will degrade the efficiency considerably. Qaiterally
one can say that the efficiency increases with the flatness of the potential.

There exist, in principle, two ways to solve the divergent potential probldra.
first one consists of finding a better alternative to the simple approximation to the
time evolution operator than in (12.57). Such approximations have beeredevis
and we shall consider these in the context of path integral Monte Carleg— s
Section 12.4. The common procedure however is to ugeide function which
transforms the original Scdinger equation into a new one with a flatter potential,
just as in the case of the Fokker-Planck variational Monte Carlo methods Th
method will be described in the next section.

12.3.3 Guide function for diffusion Monte Carlo

As we have seen in the previous subsection, the diffusion Monte Carlo thetho
causes problems if the potential is unbounded, and this is the case in almgst ev
many-particle system. Sampling some other function instead of the ground state
wave functiony might cure this problem.

A suitable function isp(R,7) = ¢(R, 7)¥1(R) where WY1(R) is some trial
function which models the exact wave function in a reasonable way. I touh
thatp satisfies a Fokker-Planck type of equation:

0péRT’, ) = %DR[DR— F(R]p(RT1)—[EL(R) —Ef]p(R1). (12.58)
Here, the ‘force’F(R) is again given as 2rWr(R)/Wt(R) — this form differs
from (12.49) because (12.58) is not a ‘pure’ Fokker-Planck equaftocontains
a ‘potential term’E; (R) — Ey. The ‘local energyE, (R) is given as usual by

_ HY(R)  —0?¥1(R)/2+V(RWr
R=0w - (R

The FP-diffusion term will be used to diffuse the walkers, whereas tbtefgial
E. (R) — Er is used in a branching process. By writing out all the terms on the left
and right hand sides of Eq. (12.58), it can be checked that this equationes to
the imaginary time-dependent Sodinger equation (12.33).

The procedure is now a combination of the Fokker-Planck VMC, and @M€
method without guide function: we let the walkers diffuse just as in the Fokke
Planck VMC method, with a transition probability

(12.59)

Tar (R = Rog1) =

lem exp{ ~ [Rus1 — Ro— F(R\AT/27 /(287) } . (12.60)
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Then branching is performed, according to the vajueexp{—ATt [E (R) — Et]}.
What do we gain by this method? We avoid problems of the kind encountered
above with strongly varying potentials. The role\6fin standard DMC is now
taken over byE, (R), which is (hopefully) rather flat. I#1(R) were anexact
eigenstate, theld, would be independent & If Wy is a reasonable approximation
to the ground state, thef) (R) is reasonably flat, and the method will be reliable.
It is clear now why the cusp conditions are so important: they guaranteéhthat
trial function converges to the exact solution in those regions where tieeted
diverges strongly — these are the points which cause problems. The musihgd
trial — or guide — functions was introduced by Kdlaand is commonly called
importance sampling Monte Carlo

We can again correct for the time step error using a Metropolis procgdstas
we did for VMC in Section 12.2.5. Note th& is not symmetric — therefore,
we must use the generalised Metropolis method in order to guarantee detailed
balance (see also the variational Fokker-Planck simulation). A trial displant is
accepted with probability

, Tar(R — R)p(R)
min (1, Tar (RS R)p(R) > (12.61)

and rejected otherwise.
With importance sampling, the algorithm reads:

Put the walkers at random positions in configurational space;
REPEAT
FOR all walkers DO
Shift walker from its positiorR to a new positiorR’
by first moving it over a distandeéAt /2 and then
adding a random displacement according to the
transition probability of Egs. (12.28) and (12.29);
Accept the move with a probability given by (12.61);
IF Accepted THEN
Evaluateq = eXp{_AT [(ELocal(R) + ELocaI(R)) /2 - ET]};
Eliminate the walker or create new onesat
depending ors = q+r, wherer is random,
uniform between 0 and 1;
END IF;
END FOR
UpdateEs using (12.55);
UNTIL finished.
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Let us first apply the importance sampling method to the one-dimensional
harmonic oscillator. We use the same trial (or guide-) functénx) = g
as in the VMC simulation. In that case the quantum force is given by

F(x) = —4ax, (12.62)

and the local energy by Eq. (12.6). Indeed, the local energy is dasdrika = 1/2
and it will be slowly varying ifa is close to ¥2. Fora = 0.4, a target number
of 6000 walkers and 4000 steps, we find for the ground state eerg9.5002+
0.0003 and withar = 0.6, E = 0.4998+ 0.0003.

We can now do the hydrogen and the helium atom problems. For hydrogen w
use a guide function exp-ar) and a target number of 2000 walkers performing
4000 steps. The local energy is given by (12.10). Obviouslypfer 1 we find the
exact ground state energy 0.5 Hartree as the local energy is constant and equal
to this value. Forr = 0.9, we find a ground state energy ©0.49675) and for
a = 1.1 we findEg = 0.50355). Both these values do not agree with the exact
value. The reason is that the guide function should solve the divergeoickem at
r =0, but it can do this only if the cusp conditions are satisfied. dFet 1 this is
not the case. This shows the importance of the cusp conditions to be sdtsfied
the trial function.

Finally we present results for the helium atom. We use théBadtrow wave
function (12.11). Varying the parameter gives values above and below the
exact energy. If we monitor the variance of the energy, we find a minimum at
a ~ 0.15 and an energ¥g = —2.90292) for 1000 walkers performing 4000
steps. Remember the exact energy-&903 and the variational energy for the
uncorrelated wave function (the Hartree-Fock energy)2s8617 atomic units.

— Programming exercise —

Modify the DMC programs of the previous section to include a guide functiah a
compare the results with those given in this section.

12.3.4 Problems with fermion calculations

We have described how the simulation of a diffusion process can gerarate
average distribution of random walkers which is proportional to the gratate
wave function or (in the case of guide function DMC) to the product of tgfion
and a trial function. A distribution of walkers can, however, represaht wave
functions which are positive everywhere. For bosons, this propedstisfied by
the ground state, but the same does not hold in the case of fermions. fit\dtess
associated with treating fermions in quantum Monte Carlo, are generallyaieno
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as ‘the fermion problem’. It should be noted that there is no fermion proiolem
VMC.

12.3.4.1 The fixed-node method

There are several approaches to the fermion problem. The simpleskapation

is thefixed-nodemethod, in which the diffusion process is simulated as before,
except for steps crossing a node of the trial function being forbid@lea.nodes of
the trial function divide the configuration space up into simply connectednasu

in which the trial wave function has a unique sign. These volumes areagegar
from each other by nodal surfaces: hypersurfaces on which tlve fuaction
vanishes. To understand why the fixed-node method is useful, sufipatsee
would know the nodes of the exact ground state wave function. If wklcmive

the ground state of the Sdidinger equation in each simply connected region
bounded by the nodal surfaces of the ground state wave function wiikhiag
boundary conditions on these surfaces, this solution would be propalrtmithe
exact ground state of the full Hamiltonian in each region. In the fixed-sollgion,

we solve the Sclidinger equation in connected regions bounded by the nodal
surfaces of the trial function instead of the exact ground state wawtidan and
therefore the quality of the solution depends on how close these sudezds
those of the exact ground state. It can be stothat the resulting energy is a
variational upper bound to the exact ground state energy. It shouldtee that
the fixed-node method often gives a substantial improvement over theioaaia
Monte Carlo method (which does not suffer from the fermion problem).

An additional problem with the fixed-node method is the fact that moves in
which two (or any even number of) nodal surfaces are crosseccaepted. This
introduces an error as the number of walkers in two regions separataa &yen
number of node crossings does not necessarily represent the mdha wave
functions on those regions. The degree to which we suffer from thigases
with the time step, as a larger time step will result in larger steps to be taken —
it introduces an extra time-step bias error which goes by the raoss-recross
error.

Let us study the nodes more carefully. The requirementghag,...,xy) =0
(x; denotes the spin-orbit coordinate of electipmefines the nodal surfaces. If
we assume the spins of ti fermions to be given, then the nodes foriN 3
1 dimensional hypersurfaces in thél-8limensional configurational space. The
obvious zeroes ap whenevek; = x; for any pair # j define a 8l — 3 dimensional
scaffolding for the nodal surface structure. This scaffolding dagsdepend on
the particular form of the trial function. A node of a one-electron orbitathia
Slater determinant occurring in the wave function should not be confugacd
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‘fermionic zero’, as such an orbital node does not force the manyreteavave
function to vanish: one of the electrons, $amight be at a zero of some orbital, but
the wave function also contains contributions with the coordinates of theaisctr
permuted, and in general the coordinates of the other electrons amrewfiffeom
those of electromn

Changing the diffusion Monte Carlo method to a fixed-node simulation is easy.
Simply add the following step just after having generated a new trial position of
a particle, sayi. Check whether the trial wave function changes sign for this
displacement. If this is the case, the move is not accepted, otherwise praxee
in the boson case. The interested reader can implement the fixed-nodsi@xte
and test it, for example, for Li taking an appropriate Slater determinattiéayuide
function. More details can be found in Ref. 9.

*12.3.4.2 The transient estimator method

In view of the variational error present in the fixed-node method it is wdrile to
devise other methods. A method which does not depend on fixed notetesirs
thetransient estimatomethod. To understand how and why this method works, it
is important to realise that the Hamiltonian and hence the time evolution operator
is the same for fermions and for bosons. However, because the time emolutio
operator is symmetric with respect to particle permutations, an antisymmetric
(fermionic) initial state will remain antisymmetric and a symmetric (bosonic) state
remains symmetric.

Let us split an arbitrary fermion wave functignup into two partsgp_ and ¢, ,
which contain the negative and positive partspakspectively [all wave functions
depend on all the spin-orbit coordinabés- (x1, X2, ...,Xn), and on imaginary time

T]:

1
@ = > (ol + o) (12.63a)
1
¢ =50l -9), (12.63Db)
so that
O=0.— . (12.64)

Now perform two independent DMC calculations, one withand the other with
@, as a starting distribution, whexgis a trial fermion wave function. What will
happen? Applying the (exact) imaginary time evolution operatef — Y; 1) to ¢
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we obtain
o(Y;T) = /dx T(X = Y;T)@(X;0) =
/dX TX=Y;1)@(X,0)— /dX TX—=Y;1)0-(X,0) =

@ (Y,t) — @_(Y,t). (12.65)

This suggests that we can follow the time evolutiorpdfy subtractingp. (t) and

@_(t) as produced in the two simulations. 4&s(0) and @, (0) are both positive,

and as the imaginary time evolution operator is always positive, the applicdtion o
the DMC approach causes no problems. In fact, one could also saytthatriitial

wave function is positive everywhere, it contains no fermion characighance

we have an unambiguous bosonic time evolution for such an initial state. A guide
function approach can be used in the two boson simulations.

As the time evolution operator contains no fermion-like features (see gbove)
both simulations will tend to the bosonic ground state solution for long times. The
fermion ground state wave function is an excited state solution of the matiglpar
Hamiltonian, so the boson ground state contribution to the solution at imaginary
time 1 will dominate the fermion contribution by a factor eyEr — Eg)], where
Eg andEr are the fermion and boson ground state energies respectively. Note that
this factor grows exponentially with time. The fermion ground state wave fumctio
is the difference between the two distributions resulting frogn and @, , which
because of the foregoing analysis are both essentially boson-like. dfev® find
a fermion wave function as a small difference of two large, essentiallyrbesge
function distributions we must be prepared for large statistical errors anhalysis
given here is represented pictorially in Figure 12.2.

The analysis so far leads to the conclusion that, at the beginning, thesdidger
between the distributions is equal to the trial functipnand for large times it
converges to the exact fermion wave function, but it will be buried in theeno
of the boson solutions forming the bulk of the two distributions. We might be
lucky: if the trial function relaxes to the exact Fermi wave function quickigugh,

i.e. before the latter is buried in the ‘boson noise’, then we have an interteedia
(‘transient’) regime in imaginary time during which we might extract useful data
from the simulation. The trial energy which is adjusted to keep the respective
population sizes stable is ho longer a suitable energy estimator as this wilkgenve
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Figure 12.2: Evolution of the distributions in the trangienergy estimator method. The
wave functiong(t = 0) is shown in (a); it can be written as the difference of ¢heand
¢@_. These two functions evolve separately and tend therefotket same boson ground
state solution, as shown in (c). Subtracting the two wavetfans in (c) gives the small
difference in (d), and this will be soon buried in the noisé¢hia solutions in (c).

to the boson energy. Therefore we use the ‘transient estimator’:

_ JdX(1)He(t =0)

Ere(T) = TTaX o(r)p(t = 0)
__ JdXe (DHe(r=0) [dXe (1)He(T =0)
JaX [ (1) - @-(D)]e(t=0)  [dX[@ (1) — @ (1)]p(T=0)
(12.66)

As the wave functiong(t) converges to the exact fermion ground state, this
estimator will indeed relax to the exact fermion energy. As mentioned already,
the problem resides ip(7) to be extracted as the small difference between two
large distributions.

The estimator (12.66) is evaluated as follows. At timehe walkers occupy
points in configurations space which are distributed according.{a). For a
walker at the pointX in the @, -simulation we evaluatéd @(X,7 = 0) (for the
numerator) andp(X,7 = 0) (for the denominator), and sum over walkers. We
do the same with the_ simulation, but now give the contributions a minus sign.
The quantityH ¢(X, T = 0) can be evaluated becauggX, T = 0) is a trial function,
given in analytic form. The sum is divided by the sumgiX, 7 = 0) over all the
walkers.
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There exist several extensions to and refinements of the TE method, which a
beyond the scope of this book. A common characteristic of these methods is tha
they are subject to instability in the errors for lame

12.4 Path integral Monte Carlo

In Chapter 11 we saw that the partition function of a classical lattice spinmsyste

a strip can be evaluated by diagonalising the transfer matrix. The transtex ma
can be considered as a kind of ‘time evolution operator’, which projedtsheu
eigenvector belonging to the largest eigenvalue (in absolute value). €ldteon
with the time evolution process described in the previous section is evident. The
transfer matrix effectively reduces the dimension of the classical systeme but
the price we pay for this reduction is that the diagonalisation of the transtexnsa

an expensive operation. In this section we consider the reverseanaragion: we
shall transform a quantum mechanical systewhdimensions, which can be solved
by diagonalising the Hamiltonian matrix, to a classical systediril dimensions.
This system can then be simulated with the Monte Carlo procedures desicribed
Chapter 10. The new formulation enables us to obtain time-dependenttEepe
or physical quantities of the system at finite temperature. For a very dtearsgion

of the path integral concept, see the book by Feynman and Piobs.

12.4.1 Path integral fundamentals

The path integral method provides a way to calculate matrix elements and tfaces o
the time evolution operator of a quantum system in imaginary time:

T(1)=e™ (12.67)

which we have encountered in the previous section. If we interpret thanargg
time as an inverse temperature~ 3 and take the trace of the time evolution
operator, we obtain the partition functiah of the quantum system at a finite
temperaturd:

2(B) =Tr (e ) = /dR <R’e’BH‘ R). (12.68)

R denotes the coordinates bf particles. The path integral method enables us
to sample system configurations with the appropriate Boltzmann factor, so that
expectation values for a quantum system at a finite temperature can bategalu

The problem with expression (12.68) is that it contains the exponentialeof th
Hamiltonian, which, as mentioned already in Section 12.2.4, makes the trace of the
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time evolution operator difficult to evaluate. For short tinte®r 3), this is not

a problem as we can write the Hamiltonian as a sum of several terms (e.g. kinetic
and potential energy) which themselves are easily tractable in an expdrethia
neglected CBH commutators yield systematic errors of ordeWhat can we do

if T is not small? In that case, we divide the timeip into many (sayM) small
segmentdt = /M which can be treated in the short-time approximation. For a
system consisting dfl spinless particles with coordinatBs the partition function

can be written as

[ dRo(Role ™ |Ro) = [ dRydR:...dRy-
(Role™®™|Ry) (Re|e ®™|Ry) - (Ru_1]e *™|Ro). (12.69)

We have insertedM — 1 unit-operators/ dR |R)(Ri| between the short-time
evolution operators. The procedure in which time is divided up into manyt shor
segments is callegilme-slicing The fact that the first and the last state in the product
of matrix elements are identicalRp)) implies that we have periodic boundary
conditions in ther-direction.

We know the matrix elements of the short-time evolution operator — it has been
derived in Section 12.2.4:

_ 1 B CRRP
T(RR;AT) = (Re®™|R) = e AV (R g-(R-R)%/(2A1) — (12.70)

The potential could have been distributed symmetrically ®Remd R, but we

shall see that the final result does not depend on this distribution. Eheffiter

CBH commutator can be shown to vanish in this case, so that this short-time
approximation is accurate to ordAr?. Substituting this result into (12.69), we
obtain

1
/d%(Roye—TH|Ro> ~ (znAr)I%NM/Z/dR) dR, dR>...dRy_1

exp{—Ar Mil [1 (RM“)2+V(%)

Lol 2 AT

} . (12.71)

In this expressionRy = Rp. The prefactor before the integral seems quite
dangerous in the sense that it explodes when we take theAimit 0. However,

this is balanced by the fact that, of the huge integration volume, only a tiny part
gives significant contributions to the integrand — in fact, the smaller weakéne
narrower the Gaussian kinetic energy integrands will be and the limit foe Mrg
therefore still exists.
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Figure 12.3: Classical system described by the path integrhe two electrons in the
helium atom. Periodic boundary conditions are imposedgiba quantum imaginary time
(the circle). The small full circles denote the helium nidiee heavy ones the electrons.
The circle is the time axis with periodic boundary condiioThe dashed lines represent
harmonic couplings between the electrons of adjacent sdpieng the time axis). The
heavy drawn lines denote the electron—electron intenactind the heavy dotted lines the
electron—nucleus interactions.

You might recognise the summand in the exponent as the Lagrangian (ietdiscr
imaginary time) of the classical many-particle system with coordinBietwe
take AT — 0. The sum is then thaction, which assumes its minimum for the
classical trajectory. The integral is a sum oadr possible sets of coordinates
Ro,...,Ru. Such a set denotegpathin configuration space. We see that the trace
of the time evolution operator is written as a sum, or rather an integral, over all
possible paths. Itis important to realise what the classical system rafge3ée
guantum many-particle system we are describing contdiparticles, interacting
with each other and with an external potential through the potev{ig). We
have M copies of this many-particle system along the quantum imaginary time
direction, so that the classical system consistd ldfparticles. The first term in the
sum in (12.71) derives from the kinetic part of the quantum Hamiltonianntibe
classical system it denotes a harmonic coupling between correspondtiagiega
in adjacent copies: they are connected by springs. Figure 12.3 shewkatsical
particle system and couplings for the two electrons in helium Wits 5.

The quantum partition function for a system Nfthree-dimensional particles
is given as Trexp-BH). The right hand side of Eq. (12.71) can be interpreted
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as theclassicalpartition function ofNM particles in three dimensions (without
momentum degrees of freedom — these can be thought of as being indemyrety
because it is an integral over all the configurations of the coordiftedth an
appropriate Boltzmann factor. The energf/ of the classical system is identified
with the Lagrangian associated with the quantum Hamiltomian An unusual
feature is the inverse temperature occurring in the denominator of the hiarmon
interactions of the classical Hamiltonia#® (remembeAT = 3/M). We see that

the path integral maps the partition function of ld-8imensional system onto a
3N + 1 dimensional system where the extra dimension can be interpreted either
as an imaginary-time or as an inverse-temperature axis — it corresponds to th
sub-index of theR;.

The path integral provides a very clear insight into the nature of quantum
mechanics. Up to now, we have plt= 1. Had we kepth in the problem,
we would have seen that the prefactor in the exponent occurringebfersum
wasAt/h instead ofAt. The classical limit corresponds to= 0, which implies
that the path with minimal action dominates all the other paths. This is in fact
Hamilton’s principle: the classical path corresponds to the minimal action. If we
‘switch Planck’s constant on’, we see a contribution from the nonminimidspa
emerging. If we had not identifieRy with Ry and if we had not integrated over this
coordinate, we would have a system with fixed end points, which bringstiiegy
with classical mechanics even closer. Figure 12.4 gives a pictorialsemiation
of the idea of the path integral.

In this section and in the previous one, we have assumed that the erroes in th
individual short time approximations do not add up to significant errarafge
times. The justification of this assumption is a theorem, which is usually denoted
as the Lie-Trotter-Suzuki formula, which says that for a Hamiltotdawhich can
be written as the sum &f operators:

H— H, (12.72)
2,
it holds that M
eaH (efaHl/MefaHz/M . 'e*O!HK/M> (12.73)

for largeM. The error is then given By 12

a?

Hen, Hypy] [ €9 ZmFiml (12.74)
M

m>m

where|...| denotes the norm of an operator.
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T ——

Figure 12.4: The path integral for a one-dimensional systEine vertical axes arg-axes
at different times. A path is a set of points given on thesesadée heavy drawn path is
the stationary path of the action, which is the solution tdlassical equations of motion.
The thin lines represent neighbouring paths. For thesesptih action is not stationary,
but they are taken into account in the quantum mechanichliptggral.

It is very easy to get confused with many physical quantities having differ
meaning according to whether we address the time evolution operator, thioua
partition function, or the classical partition function. Therefore we summaiis
different interpretations in table 12.2 The classical time in the last row of t&bke 1

is the time which elapses in the classical system and which is analogous to the
time in a Monte Carlo simulation — this quantity has no counterpart in quantum

mechanics or in the statistical partition function.
The quantum partition function is now simulated simply by performing a

standard Monte Carlo simulation on the classical system. The PIMC algorithm

is

Put theNM particles at random positions;
REPEAT
FORm=1TOM DO
Select a time slicenat random;
Select one of th&\ particles at time slicenat random;
Generate a random displacement of that particle;
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Table 12.2: Meaning of several physical quantities in déffe interpretations of the path integral.

Quantum mechanics

Quantum statistical mechanics

Classical mechanics

StptiySies

d-dimensional
configuration space

imaginary timer

time evolution operator

kinetic energy

Lagrangian

path integral

classical limit

d-dimensional
configuration space

inverse temperature

B=1/keT
Boltzmann opera&fH

kinetic energy

Lagrangian

quantum partition function
of d-dimensional system

zero temperature

d-dimensional subspace

of configuration space

1-dimensional axis

in configuration space

harmonic interparticle potential

Lagrangian

stationary path
time

d-dimensional
gooation space

inverse temperature

B=1/keT

transfer matrix

inter-row oy of
transfer matrix

Hamiltonian

partition function

af + 1-dimensional system

zero temperature
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Calculater = exp[—AT (Hew— 514 ];
Accept the displacement with probability niinr);
END FOR;
UNTIL Finished.

In this algorithm we have used? to denote the Hamiltonian of the classical
system, which is equal to the Lagrangian occurring in the exponent ofétie p
integral — see Eq. (12.71).

Let us compare the path integral method with the diffusion Monte Carlo
approach. In the latter we start with a given distribution and let time elapse. At
the end of the simulation the distribution of walkers reflects the wave function
at imaginary timet — information about the history is lost: physical time
increases with simulation time. The longer our simulation runs, the stronger
will the distribution be projected onto the ground state. In the path integral
method, we change the positions of the particles along the imaginary-time
(inverse-temperature) axis. Letting the simulation run for a longer time ddes no
project the system more strongly onto the ground state — the extent to which
the ground state dominates in the distribution is determined by the temperature
B = MAT, i.e. for fixedAr, it is determined by the length of the chain. The PIMC
method is not necessarily carried out in imaginary time — there exist versitims w
imaginary time, which are used to study the dynamics of quantum systets.

The analysis so far is correct for distinguishable particles. In factave simply
denoted a coordinate representation statéRbyFor indistinguishable bosons, we
should read for this state:

1
‘R>ZWZ|I’1,I’2,...,I’N>, (12.75)

where the sum is over all permutations of the positions. The boson chaisacte
noticeable when we impose the periodic boundary conditions along-thes,
where we should not merely identifi in the last coordinatéRy) with the
corresponding position ifRp), but also allow for permutations of the individual
particle positions in both coordinates to be connected.

This feature introduces a boson entropy contribution, which is particularly
noticeable at low temperatures. To see this, let us consider the particiffssiag
from left (Rp) to right (Rv). On the right hand side we must connect the particles
to their counterparts on the left hand sides, taking all permutations intor@tcdbu
the Boltzmann factor forbids large steps when going from left to right, it li&ely
that we can connect the particles on the right hand side to the permuted keftmos
positions without introducing a high energy penalty. This is the case whefi is
small, or equivalently when the temperature is high. This can be seen by goticin
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that, keepingAt = /N fixed, a decreasf must be accompanied by a decrease
in the number of segmentd. Fewer segments means less opportunity for the
path to wander away from its initial position. On the other hand, we might keep
the number of segments constant, but decréaseAs the spring constants are
inversely proportional téA7 [see Eq. (12.71)], they do not allow, in that case, for
large differences in position on adjacent time slices; hence permutatiogsitee
unlikely. When the temperature is high € 8 small), large diffusion steps are
allowed and there is a lot of entropy to be gained from connecting the partile
their starting positions in a permuted fashion. This entropy effect is reggerior

the superfluid transition ifHe 16~ Path integral methods also exist for fermion
systems. A review can be found in Ref. 19.

What type of information can we obtain from the path integral? First of all,
we can calculate ground state properties by tal@ngery large (temperature very
small). The system will then be in its quantum ground state. The particles will
be distributed according to the quantum ground state wave function. Tiseca
seen by considering the expectation value for particle 0 to be at poBiiomhis
is given by

P(Ry) = ;/dedRz...dRM_l
(Role™ ™ |Ry) (Re|e ®™|Ry) ... (Ru_1]e “™M|Ro). (12.76)

Note that the numerator differs from the path integral (which occurs in the
denominator) in the absence of the integration digr Removing all the unit
operators we obtain
P(Ry) = - \Pole™Ry)
J dRo (Role™™|Ro)
LargeT is equivalent to low temperature. Butifis large indeed, then the operator
exp(—1H) projects out the ground stage:

(12.77)

e ™M ~|@w)e™e (g, larger. (12.78)
Therefore we have
P(Ro) = %G‘TEG\ (¢5|Ro) |?, larger. (12.79)

Because of the periodic boundary conditions inthdirection we obtain the same
result for each time slicen. To reduce statistical errors, the ground state can be
therefore obtained from theveragedistribution over the time slices via a histogram
method.
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The expectation value of a physical quan#tyor a quantum system at a finite
temperature is found as
Tr (Ae PH)
We =1 e -
The denominator is the partition functi@h We can use this function to determine
the expectation value of the energy

(12.80)

Tr(He PH
(E)g = r(;) _ _;B InZ(B). (12.81)

If we apply this to the path-integral form @&f, we obtain for the energy per particle
(in one dimension):

E M 1
<N>I3 — 25~ N (K= VD). (12.82)
with
K=M z (R zgg‘*l) (12.83)

andV is the potential energy — see also problem 12.1. The first term in (12.82)
derives from the prefactor/4/2mAB of the kinetic Green function. The angular
brackets in the second and third term denote expectation values evaludted in
classical statistical many-particle system. It turns out that this expressidhe
energy is subject to large statistical errors in a Monte Carlo simulation Tkermea

is that 3/ and (K)/(NM) are both large, but their difference is small. Hernean
al.?% have proposed a different estimator for the energy, given by

m=0

<§>B _ <,\1,|MZ_1 [V(Rm)+;Rm-DRmV(Rm)]>. (12.84)

This is called thevirial energy estimator- it will be considered in problem 12.1.

The virial estimator is not always superior to the direct expression, & wa
observed by Singer and Smith for Lennard-Jones systértiss is presumably
due to the steepness of the Lennard-Jones potential causing largatflrdun
the virial.

12.4.2 Applications

We check the PIMC method for the harmonic oscillator in one dimension. We have
only one particle per time slice. The particles all move in a ‘background poltentia
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which is the harmonic oscillator potential, and particles in neighbouring sliees ar
coupled by the kinetic, harmonic coupling. The partition function reads

M-1 _ 2
Z:/dxo...dmlexp{—MnZO [W+;xﬁ1}} (12.85)

We have use@ = 10 andM = 100. 30000 MCS were performed, of which the first
2000 were deleted to reach equilibrium. The maximum displacement was tuned to
yield an acceptance rate of about 0.5. The spacing between the enestyyde

the harmonic oscillator is 1; therefof&= 10 corresponds to large temperature.
We find for the energf = 0.51+ 0.02, in agreement with the exact ground state
energy of ¥2. The ground state amplitude can also be determined, and it is found
to match the exact forfy(x)|? = e very well.

The next application is the hydrogen atom. This turns out to be less stidcess
just as in the case of the diffusion MC method. The reason is again that writing
the time evolution operator as the product of the exponentials of the kinetic and
potential energies is not justified when the electron approaches the suatetine
Coulomb potential diverges there — CBH commutators diverge thereforeltoo
use of guide functions is not possible in PIMC, so we have to think of songgthin
else. The solution lies in the fact that theacttime evolution operator over a time
sliceAt does not diverge at= 0; we suffer from divergences because we have used
the so-callegbrimitive approximation

T(r—r’ ;A1) =

<2T[A1T)3/2exp[—(r —1')/(2AT)] exp{ —AT [V(r)+V(r')] /2} (12.86)
to the time evolution operator. The effect of averaging over all the conismuo
paths from(r,T) to (r’,7 4+ Ar), as is to be done when calculating the exact time
evolution, is that the divergences matr’ = 0 are rounded off. So if we could
find a better approximation to this exact time evolution than the primitive one, we
would not suffer from the divergences any longer. Several sppioximations
have been developéd.?® They are based either on exact Coulomb potential
solutions (hydrogen atom) or on the cumulant expansion. We considerttée la
approximation in some detail in problems 12.2 and 12.3; here we shall simply
quote the result:

& erf[r(1')/ /207

chmulan(r,r/;AT) = 0 dr’ r(0) , (12.87a)
where / @ N
N L N (BT—-T)T

r(r)=r+ AT(r ryando(t) = AT (12.87b)
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Figure 12.5: The cumulant potential fAr = 0.2 (diamonds) and the Coulomb potential.
It is clearly seen that the cumulant potential is rounded of=a0.

The cumulant approximation fof can be calculated and saved in a tabular form, so
that we can read it into an array at the beginning of the program, and litain the
potential for the values nheeded from this array by interpolation. In facfyif fixed,
Veumulantdepends on the norms of the vectorandr’ and on the angle between
them. Therefore the table is three-dimensional. We discretisgsay, 50 steps
Ar between 0 and some upper limjtax, (Which we take equal to 4) and similarly
for r’. For values larger thanmax we simply use the primitive approximation,
which is sufficiently accurate in that case. For the ar@lim betweenr andr’

we store cof, discretised in 20 steps betweeil and 1 in our Table. For actual
valuesr, r’ andu = cos6 we interpolate linearly from the table — see problem 12.4.
Figure 12.5 shows the cumulant potentidr =r’, 8 = 0;At = 0.2), together with

the Coulomb potential; the rounding effect of the cumulant approximation is clea
In a path integral simulation for the hydrogen atom we find a good grounel sta
distribution, shown in Figure 12.6. For the energy, using the virial estimatbr w
the original Coulomb potential (which is of course not entirely correct) fine

Es = —0.49440.014, usingATt = 0.2, 100 time slices and 60000 MC steps per
particle, of which the first 20000 were removed for equilibration.

Applying the method to helium is done in the same way. Using 150000 steps
with a chain length of 50 and = 0.2, the ground state energy is found a83+
0.06 atomic units. Comparing the error with the DMC method, the path integral
method does not seem to be very efficient, but this is due to the straightébrwa
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Figure 12.6: PIMC ground state amplitudg(r)|? (diamonds) and the exact result. 60000
MCS with a chain length of 100 ard= 0.2 were used.

implementation. It is possible to improve the PIMC method considerably as will
be described in the next section.

The classical example of a system with interesting behaviour at finite tempgeratu
is dense helium-4. In this case the electrons are not taken into account as
independent particles, rather a collection of atoms is considered, intgractin
through Lennard-Jones potentials. We shall not go into details of implementatio
and phase diagram, but refer to the work by Ceperley and Poll4ck.

12.4.3 Increasing the efficiency

The local structure of the action enables us to use the heat bath algoritteadns
of the classical sampling rule, in which particles are displaced at randiarmty
within a cube (or a sphere). If we update the coordirte keepingRy,_1 and
Rmy1 fixed, then in the heat-bath algorithm, the new vaRjemust be generated
with distribution

(Rh—Rm)?

p(R,) =exp —ATW -ATV(R,) (12.88)

whereRy, = (Rn+1+ Rm-1)/2. We may sample the new position directly from this
distribution by first generating a new position using a Gaussian randoaraen
with width 1/(2A1) and centred arounBy, and then accepting or rejecting the
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new position with a probability proportional to expAtV(R,,)]. This procedure
guarantees 100% acceptance for zero potential. If there are hardhteractions
between the particles, the Gaussian distribution might be replaced by a more
complicated form to take this into account — for details see Ref. 4.

A major drawback of the algorithm presented so far is that only one atom is
displaced at a time. To obtain a decent acceptance rate the maximal distance ov
which the atom can be displaced is restricted by the harmonic interaction Inetwee
successive ‘beads’ on the imaginary time-chaimta/At. The presence of the
potentialV can force us to decrease this step size even further. It will be clear that
our local update algorithm will cause the correlation time to be long, as this time
is determined by the long wavelength modes of the chain. As it is estimated that
equilibration of the slowest modes takes roughil§M?) Monte Carlo sweeps (see
the next chapter), the relaxation time will scaleN3 single-update steps. This
unfavourable time scaling behaviour is well-known in computational field theor
and a large part of the next chapter will be dedicated to methods for eingathe
efficiency of Monte Carlo simulations on lattices. An important example of such
methods isiormal mode samplirtd 2°in which, instead of single particle moves,
one changes the configuration via its Fourier modes. If one changegdorple
the k = 0 mode, all particles are shifted over the same distance. The transition
probability is calculated either through the Fourier-transformed kinetigr{baic
interaction) term, followed by an acceptance/rejection based on the clmange
potential, or by using the Fourier transform of the full action. We shalltrezt
these methods in detail here — in the next chapter, we shall discuss similadsetho
for field theory.

A method introduced by Ceperley and Polldckdivides the time slices up in a
hierarchical fashion and alters the values of groups of points in vasiages. At
each stage the step can be discontinued or continued according to s@p&ace
criterion. It turns out that with this method it is possible to reduce the relaxation
time from M3 to M¥*4 The method seems close in spirit to the multigrid Monte
Carlo method of Goodman and Sokal — we shall describe the latter in the next
chapter.

It will be clear that for a full boson simulation, moving particles is not suffitie
—we must also include permutation moves, in which we swap two springs between
particles at subsequent beads, for example. However, the cotifigisrare usually
equilibrated for a particular permutation, and changing this permutation can be
drastic a move that permutations are never accepted. In that case itildgtss
combine a permutation with particle displacements which adjusts the positions to
the new permutatiof.
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12.5 Quantum Monte Carlo on a lattice

There are several interesting quantum systems which are, or cami@dted on

a lattice. First of all, we may consider quantum spin systems as generalisations
the classical spin systems mentioned in Chapter 7. An example is the Heisenberg
model, with Hamiltonian

Hueisenberg= —J ;51' - §j (12.89)
{ij

where the sum is over nearest neighbour sjtgsof a lattice (in any dimensions),

and the spins satisfy the standard angular momentum commutation relations on the

same sitef{ = 1):

_is?

=5
Another example is the second quantised form of the @tihger equation.

This uses the ‘occupation number representation’ in which we have areaiib

annihilation operators for particles in a particular state. If the &tihger equation

is discretised on a grid, the basis states are identified with grid points, and the

creation and annihilation operators create and annihilate particles on teajtiaks

points. These operators are caIIqH and ¢; respectively, and they satisfy the

commutation relations

s, ¢ (12.90)

Tt : t
[Ci,Cj] = [Ci 7Cj] = O' [Ciacj} = dj . (1291)

In terms of these operators, the Siaflinger equation for a one-dimensional, non-

interacting system reatfs

Y ~t(cfoiatclaa) + 3 un (12.92)
| |

wheren; is the number operataniici, and where appropriate boundary conditions
are to be chosen.

A major advantage of this formulation above the original version of thedichr
inger equation is that the boson character is automatically taken into accaenet: th
is no need to permute particles in the Monte Carlo algorithm. A disadvantage is
that the lattice will introduce discretisation errors.

Finally, this model may be formulated for interacting fermions. A famous model
of this type is the so-calletiubbard model which models the electrons which
are tightly bound to the atoms in a crystalline material. The Coulomb repulsion is
restricted to an on-site effect; electrons on different sites do not fééié creation
and annihilation operators are now calkﬂq,cm—, whereo = =+ labels the spin.
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They anti-commute, except fc@c;r_’g,cjya/]Jr = §j0c . The standard form of the
Hubbard model in one dimension reads

H=" ~t|cloti1o+ 0 1000] +U Y Mom o (12.93)
1,0 |

wheren; 4 is the number operator which counts the particles with spat sitei:
n = c{ocw—. The first term describes hopping from atom to atom, and the second
one represents the Coulomb interaction between fermions at the same site.

We shall outline the quantum path-integral Monte Carlo analysis for
one-dimensional lattice quantum systems, taking the Heisenberg method as the
principal example — extensions to other systems will be considered only very
briefly. For a review, see Ref. 5; see also 27.

The gquantum Heisenberg model is formulated on a chain consistiNgsiies,
which we shall number by the indéx We have discussed this model already in
Section 11.5. The Hilbert space has basis st@es |s1,%,...,5), where thes
assume valuegl —they are the eigenstates of theomponent of the spin operator.
The Heisenberg Hamiltonian can be written as the sum of operators containing
interactions betweetwo neighbouringsites. Let us calH; the operator-Js - 5. 1,
coupling spins at siteisandi + 1. Suppose we haw sites and thall is even. We
now partition the Hamiltonian as follows:

H = Hodd+Heven= (H1 +H3+Hs+--- +Hn_1)+
(Ho+Hs+Hg+---+Hn). (12.94)

H; andH;, » commute as thkl; couple only nearest neighbour sites. This makes the
two separate Hamiltoniartd,qg andHeven trivial to deal with in the path integral.
HoweverHqygqq andHevendo not commute. It will therefore be necessary to use the
short-time approximation.

The time evolution operator is split up as follows:

—TH ~ —ATHodd

e —ATHeven,

e —ATHOdd

e g ATHeven  @ATHodag=ATHeven (12.95)

with a total number of Bl exponents in the right hand sid&r = /M. In
calculating the partition function, we insert a unit operator of the forghS) (S
between the exponentials, whefg denotes a sum over all the spmsn S

SIS S)

SICT

7= Z <% ‘e—ATHOdd
5.3

(Sife o) (S afe 2| Sy )

(Sujz_1|e8Heen| 5) . (12.96)
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Figure 12.7: The checkerboard decomposition of the spewe-tattice. Two world lines
are shown.

The operators eXpATHeyen) and expATHoqq) can be expanded as products of terms
of the form exgAtH;). Each such term couples the spins around a plaquette of the
space—time lattice and the resulting picture is that of Figure 12.7, which explains
the name ‘checkerboard decomposition’ for this partitioning of the Hamiltonian.
Other decompositions are possible, such as the real space decompositiom,

shall not go into this here, see Ref. 5.

The simulation of the system seems straightforward: we have a space—time lattice
with interactions around the shaded plaquettes in Figure 12.7. At each siite of
lattice we have a spigm, wherei denotes the spatial index antdenotes the index
along the imaginary-time or inverse-temperature axis. The simulation consists of
attempting spin flips, evaluating the Boltzmann weight before and after thgehan
and then deciding to perform the change or not with a probability determintgebb
fractions of the Boltzmann weights (before and after). There is howewsiake
in the grass. The Hamiltoniarts,, commute with the total spin operatdy; s;
therefore the latter is conserved, i.e.

Sm+S+1m=Sm+1+S+1m+1 (12.97)

for each plaquette (remember theccurring in this equations are the eigenvalues
of the corresponding’ operators). Therefore a single spin flip will never be
accepted as it does not respect this requirement. This was already inoted
Section 11.5: letting a chain evolve under the Hamiltonian time evolution leaves the
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system in the ‘sector’ where it started off. Simple changes in the spin coafign
which conserve the total spin from one row to another are spin flips ofeafifpins
at the corners of a honshaded plaquette.

In the boson and fermion models, where we have particle nunmeisstead of
spins, the requirement (12.97) is to be replaced by

Nim + Nit2,m = Nim+1 + Nipamet (12.98)

In this case the simplest change in the spin configuration consists of aasecre
(decrease) by one of the numbers at the two left corners of a noedipdabjuette
and a decrease (increase) by one of the numbers at the right hanerscor
[obviously, the particle numbers must obey, > 0 (bosons) ornjy, = 0,1
(fermions)]. Such a step is equivalent to having one particle moving oneelattic
position to the left (right). The overall particle number along the time direction
is conserved in this procedure. The particles can be representegdry lines
as depicted in Figure 12.7. The changes presented here presdivie paimbers
from row to row, so for a simulation of the full system, one should consitser a
removals and additions of entire world lines as possible Monte Carlo moves.
Returning to the Heisenberg model, we note that the operatof—éxgH;)
couples only spins at the bottom of a shaded plaquette to those at the top. This
means that we can represent this operator as 4 rhatrix, where the four possible
states| + +), |+ —), | —+) and | — —) label the rows and columns. For the
Heisenberg model one finds after some calculation

J

eArl/2 0 0 0
o0J/4 0  coshA1J/2) sinh(Atd/2) 0
0  sinh(A1J/2) coshAt1J/2) O

0 0 0 A2

[ is the vector of Pauli matricegy, gy, 07) — we haves= % /2; h =1]. This

matrix can be diagonalised (only a diagonalisation of the inngr22block is
necessary) and the model can be solved trivially. Some matrix elements become
negative whed < 0 (Heisenberg anti-ferromagnet). This minus-sign problem turns
out not to be fundamental, as it can be transformed away by a redefinitibie o
spins on alternating sites — see refs. 5 and 28.

In the case where instead of spin-1/2 degrees of freedom, we hasen(bo
numbers on the sites, the matiil becomes infinite dimensional. In that case
we must expand eXp-AtH;) in a Taylor series expansion . We shall not go
into details but refer to the literatupe.

(12.99)
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If we have fermions, there is again a minus-sign problem. This turns out to be
removable for a one-dimensional chain, but not for two and three dim&nsia
these cases one uses fixed-node and transient estimator methodsdesoie®

12.6 The Monte Carlo transfer matrix method

In Chapter 11 we have seen that it is possible to calculate the free enfeegy 0
discrete lattice spin model on a strip by solving the largest eigenvalue of tietdra
matrix. The size of the transfer matrix increases rapidly with the strip width and
the calculation soon becomes unfeasible, in particular for models in whichitre s
can assume more than two different values. The QMC techniques whietbban
presented in the previous sections can be used to tackle the probleming finel
largest eigenvalues of the very large matrices arising in such models. pnethent
section, we discuss such a method. It goes by the name ‘Monte Carloetransf
matrix’ (MCTM) method and it was pioneered by Nightingale andtBf°

Let us briefly recall the transfer matrix theory. The elemdn(S,S) = (S|T|S)
of the transfer matriX are the Boltzmann weights for adding new spins to a semi-
infinite system. For example, the transfer matrix might contain the Boltzmann
weights for adding an entire row of spins to a semi-infinite lattice model, or a
single spin, where in the latter case we take helical boundary conditionatséh
transfer matrix is the same for each spin addition (see figure 12.8). Tderigrgy
is given in terms of the largest eigenvaligof the transfer matrix:

F= —kBT |n(/\0) (12100)

From discussions in Chapter 11 and Section 12.4, it is clear that the tramesti#x
of a lattice spin model is the analogue of the time evolution operator in quantum
mechanics.

We now apply a technique analogous to diffusion Monte Carlo to sample the
eigenvector corresponding to the largest eigenvalue — in the followingsee u
the terms ‘ground state’ for this eigenvector, because the transfer matrike
written in the form.7 = exp(—1H), so that the ground state bff gives the largest
eigenvalue of the transfer matrix. We write the transfer matrix as a product o
normalised transition probability and a weight factob. In Dirac notation:

(S|T|S)=D(S)(SIP|S). (12.101)

The ground state will be represented by a collection of random wa{l&Fswvhich
diffuse in configuration space according to the transition probaliity Each
diffusion step is followed by a branching step in which the walkers are eliminate
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Figure 12.8: Helical boundary conditions for the spin modéh nearest neighbour
interactions on a strip.

or multiplied, i.e. split into a collection of identical walkers, depending on theavalu
of the weight factoD(S)).

Let us describe the procedure fopastate clock modetith stochastic variables
(spins) which assume values

6=—,n=0,...,.p—1 (12.102)

and a nearest neighbour coupling

H
—@_%Jcos(e,—ej). (12.103)
For p = 2 this is equivalent to the Ising model (with zero magnetic field), with
J being exactly the same coupling constant as in the standard formulation of this
model (Chapter 7). For largethe model is equivalent to the¢Y model. TheXY
model will be discussed in Chapter 15 — at this moment it is sufficient to knaw tha
this model is critical for all temperatures between 0 dr¢, which corresponds
to BJ = 1.1 (the subscript KT denotes the Kosterlitz-Thouless phase transition, see
Chapter 15). The central chargdsee Section 11.3) is equal to 1 on this critical
line.
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The walkers are ‘columns’ of lattice spinéso,...,S —1), as represented in
Figure 12.8. In the diffusion step, a new spin is added to the system, andLi¢s va
is thesg-component of the new configuration of the walker. The spin components 1
to L — 1 of the new configuration are filled with the components 0 thrdugl® of
the old walker — the walker is shifted one position over the cylinder. To samgle th
new s;-value, we use the ‘shooting method’ in which the interfgall] is divided
up into p segments corresponding to the conditional probabHitg,|S) which
is proportional to the Boltzmann factor for adding a sgjr=0,...,p—1 to the
existing columrS. In our clock model example, we have

P(SIO‘S) = e‘]COS(S{)*SOHJC‘)S(Sfcrsl.—l)/D(S)7 (12.104)
with normalisation factor

D(S) = %eJcos(go—sowcos(do—sLl), (12.105)

A random number between 0 and 1 is then generated and the new spin value
corresponds to the index of the segment in which the random number falls.

The next step is then the assignment of the weidt) to the walker withD
given in (12.105). Branching is then carried out exactly as in the DMC rdetimo
fact, the weights are also multiplied by a factor €&ga ), whereEyia is the same
for all walkers but varies in time — it is updated as in the DMC method according
to

Etrial = Eo— a |n(N/N0), (12.106)

whereky is a guess of the trial energy (which should be equat oA, Ag is the
largest eigenvalue) is the actual number of walkers ahy is the target number

of walkers. This term aims at stabilising the population size to the target number
No.

The simplest information we obtain is the largest eigenvalue, which is given as
exp(Erial), Where the average value Bfiz during the simulation is to be used
(with the usual omission of equilibration steps). This can be used to determine
central charges. In table 12.3 we compare the values of this quantity ftsitige
model with those obtained by a Lanczos diagonalisation of the transfer matrix.
The agreement is seen to be excellent. ForXNemodel, the eigenvalues cannot
be found using direct diagonalisation and we can check the MCTM methgd on
by comparing the central charge obtained with the known value: 1 in the low
temperature phase and 0 at high temperatures. In Figure 12.9 we shastlte r
for BJ = 1.25. The points in a IAg vs. 1/L? graph form lie indeed on a straight
curve with a slope oft/6 (c = 1).
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Table 12.3: The largest eigenvalue of the transfer matritheflsing model on a strip
with helical boundary conditions (Figure 12.8) versuspstmidth L. The target number
of walkers is equal to 5000, and they performed 10000 diffusiteps. The third column
gives the eigenvalues obtained by diagonalising the faligfer matrix using the Lanczos
method. These values are determined with high accuracyr@nwanded to 4 significant
digits.

L InAg (MCTM) InAg (Lanczos)
6 0.9368(2) 0.9369
7 0.9348(2) 0.9350
8 0.9337(2) 0.9338
9 0.9328(2) 0.9329
10 0.9321(2) 0.9323
11 0.9316(2) 0.9318
4.432
4431 A
4428}
&£ 4.426} ”
z
4424}
4422t
sarl”
4418 t ‘ ‘ ‘
0.01 0014 0018 0022 002
L2

Figure 12.9: The logarithm of the largest eigenvalue ofthegfer matrix versus the inverse
of the square of the strip width The straight line has a slopg/6 and is adjusted in height
to fit the data.
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Exercises

12.1 In this problem we consider the virial expression for the errgy.

In a path-integral QMC simulation for a particle in one dimension in a
potential V(x) we want to find the energf as a function of temperature
T =1/(kgf3). We do this by using the thermodynamic relation

dinZ
B

where the quantum statistical partition functioms given by

E=—

Z=Tre PH,
We takeh = 1.

(a) Show by using the Lie-Trotter-Suzuki formula that

E_ Jdxodxq...dxm—1[-T +U]exp(—By)

2[3 Jdxodxg ... dxm_1exp(—BSy)
with
Z Xm — Xm+1 ;
rn:
X0 = X
1 M-
e
and
Si=T+V.

(b) Show that
Jdxodx... -1 TG X G exp(—BS) N
Jdxodxy ... dxy_1exp(—BS) B

Hint: use partial integration.
(c) Show that

"o, 9T _

S s
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(d) Show that the energy can also be determined by
1Nt 1. 9V
E= <NNZO [V(M) +2Xmaxm:| > .
(e) Show that the generalisation to a three-dimensional particle is
1Mt 1. oV
E=(— Vv Tm-—| ).
<N mzo[ (rm)+2rm drm}>

12.2 A particle moves in three dimensions. It experiences no poteiiig):= 0.
At imaginary timet = 0 the particle is localised af.

(a) What is the wave functiogiy(r, 7) of the particle fort’ > 0?

(b) We assume that the particle moves frojrat time O tor, at timet. When
we want to evaluate the matrix element

<r17o|r27 T> ;

in the path integral formalism, we should include all paths satisfying these
boundary conditions. Using completeness, we can write, withrO< T:

(r1,0[r2, 7) :/d3r’<r1,0]r’,r’> {r', T'|r,1).
Show that the integrand in this equation can be written as

—[r'—T(1))?/(20,)

ro, 0", T (r' T'|ro, T) = (ri0lro, 1) ————~e ,

(08 ) (. Flra ) = (002 T)

with . . .
OT,:T(TTT)andr(r’):r1+rr(r2—r1).

12.3 Inthis problem we consider the cumulant expansion analysis for thei@b
potentiaf- 22 using the result of the previous problem.

The cumulant expansion is a well-known expansion in statistical piysics
it replaces the Gaussian average of an exponent by the exponesatiof af

averages:
<erV> — ot V)+3(T2 (V) ~(V)?) 4
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First we note that the matrix between two positiopandr,, separated by an
imaginary timer can be written in the following way:

{rq,0] exp<— /OTV(r’T)dT’> Iro, 7).

where the time evolution leading from O tds that of a free particle and the
expression is to be evaluated in a time-ordered fashion.

If we evaluate this in the cumulant expansion approximation retaining only
the first term, it is clear that we must calculate

T
/ dr’/d3r’<r1,0|r’,r’>V(r’)<r’,r’|r2,r>.
0
This is done in this problem.

(a) Show that the Fourier transform of the Coulomb potent¥(ks) = 271/K?.

(b) Show that the Fourier transform of the expression derived inl@mokb2.2
is given by
eIk T (1) —0pk?/2

with g andr(1’) as given in the previous problem.

(c) Show, by transforming back to therepresentation, that the cumulant
potential is given by

Terf[F(1')//207 | o
(1)
12.4 In the path-integral simulation for the hydrogen atom we use a table itmwhic

the cumulant expression for the potential is stored and we want to linearly
interpolate this Table.

Veumulan{f 1,72, T) = /0

(&) Show that for a two-dimensional table containing values of a function
f(x,y) for integerx andy, the valuef(x,y) for arbitraryx andy within
the boundaries set by the table size is given as

fxy) = (2=x=y+ X +y) f(X, )+
(L+x=D—y+¥) F (X +1,Iy)+
(L+y =y =x+ ) f([4, H D+
X=D+y=[D) f(X+1[y]+2).

Here[x] denotes the largest integer, smaller than
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(b) Find analogous expressions for a table with a noninteger (but etguitis
spacing between the table entries and also for a three-dimensional Table.

12.5 [C]

In this problem we consider applying variational Monte Carlo to the hydroge
molecule. There are two complications in comparison with the helium atom.
One is the calculation of the local energy which is quite cumbersome, though
straightforward. The second one is the cusp condition.

To specify the trial wave function we take the nuclei at positigsg2. A
one-particle orbital has the form (in atomic units):

o(r) = g Ir—sv/2/a | g-Ir+si/2)/a
wherea is some parameter. The two-electron wave function is given as

Y(ri,rz) = @(ra)p(rz) f(ruz)

with f the Jastrow factor

0 =9 G )

(a) Show that the Coulomb-cusp condition near the nuclei leads to the relation

1 —
1+exp(—s/a) &

For a given distancs, this equation should be solved numerically to give
you the value.

(b) Show that the electron-electron cusp condition leads to the requirement
a= 2. This leaves a single paramefein the wave function.

(c) Now you can implement the hydrogen molecule in VMC. Calculate the
energy as a function of the parametgrandsand find the minimum.

(d) You may also evaluate the ground state by applying the method of Harju
et al® which was described in Section 12.2 in order to update the values
of B ands simultaneously.

(e) What would you need in order to calculate the molecular formation energy
from this. Note that this is the difference between the energy of the
hydrogen molecule and that of two isolated hydrogen atoms. Consider
in particular the contribution arising from the nuclear motion.
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