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Quantum Monte Carlo methods

12.1 Introduction

In chapters 1 to 4 we studied methods for solving the Schrödinger equation for
many-electron systems. Many of the techniques described there carry over to
other quantum many-particle systems, such as liquid helium, and the protons and
neutrons in a nucleus. The techniques which we discussed there were however
all of a mean-field type and therefore correlation effects could not be taken
into account without introducing approximations. In this chapter, we consider
more accurate techniques, which are similar to those studied in Chapter 10 and
which are based on using (pseudo-)random numbers – hence the name ‘Monte
Carlo’ for these methods. In Chapter 10 we applied Monte Carlo techniques
to classical many-particle systems – here we use these techniques for studying
quantum problems involving many particles. In the next section we shall see how
we can apply Monte Carlo techniques to the problem of calculating the quantum
mechanical expectation value of the ground state energy. This is used in order to
optimise this expectation value by adjusting a trial wave function in a variational
type of approach, hence the namevariational Monte Carlo(VMC).

In the following section we employ the similarity between the Schrödinger
equation and the diffusion equation in order to calculate the properties of a
collection of interacting quantum mechanical particles by simulating a classical
particle diffusion process. The resulting method is calleddiffusion Monte Carlo
(DMC).

Then we describe the path-integral formalism of quantum mechanics, which
is a formulation elaborated by Feynman, based on ideas put forward by
Dirac,1 in which a quantum mechanical problem is mapped onto a classical
mechanical system (containing however more degrees of freedom). Thisclassical
many-particle system can then be analysed using methods similar to those
employed in Chapter 10. This is called thepath-integral Monte Carlomethod
(PIMC).
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The last section of this chapter is dedicated to a stochastic technique, based
on diffusion Monte Carlo, for diagonalising the transfer matrix of a lattice spin
model on a strip, for cases where the matrix size renders even sparse matrix
diagonalisation methods unusable.

Some important applications of quantum Monte Carlo methods are to the
electronic structure of molecules,2 to dense helium-four,3, 4 and to lattice
spin-systems.5 The cited literature also contains detailed accounts of the various
methods.

12.2 The variational Monte Carlo method

12.2.1 Description of the method

In Chapter 3 we studied the variational method for finding the ground state and
the first few excited states of the quantum Hamiltonian. This was done by
parametrising the wave function – in a linear or nonlinear fashion – and then finding
the minimum of the expectation value of the energy in the space of parameters
occurring in the parametrised (trial) wave function. We described in some detail
how this calculation can be carried out if the parametrisation is linear, and we have
seen in Chapter 4 to 6 that the choice of basis functions in the linear parametrisation
is crucial for the feasibility of the method. Calculating the expectation value
of the energy involves integrals over the degrees of freedom of the collection of
particles, which can only be carried out if the basis does not include correlations
(single-particle picture) and if parts of the integration can be done analytically, for
example by using Gaussian basis functions.

In this section we consider the variational method again, but we want to relax
some of the above-mentioned restrictions on the trial wave functions and calculate
the high-dimensional integrals using Monte Carlo methods, which are very efficient
for this purpose as we have seen in Chapter 10. This is called the variational Monte
Carlo (VMC) approach. It should be noted that for some simple atoms, suchas
hydrogen and helium, the integrations can often be carried out analytically or using
direct numerical integration (as opposed to MC integration) – however, if there are
many more electrons, these methods are no longer applicable.

Let us briefly recall the variational method in the form of an algorithm:

1. Construct the trial many-particle wave functionψ� (R), depending on theS
variational parameters� = (α1, . . . ,αS). ψ� depends on the combined position
coordinateR of all theN particlesR= r1, . . . , rN.



400 Quantum Monte Carlo methods

2. Evaluate the expectation value of the energy

〈E〉= 〈ψ� |H|ψ� 〉
〈ψ� |ψ� 〉

. (12.1)

3. Vary the parameters� according to some minimisation algorithm and return to
step (i).

The loop stops when the minimum energy is reached according to some criterion.
It is the second step in this algorithm which we consider in this section. However,
below, we shall describe a variational method in which the parameters� are
adjusted according to some numerical scheme within the Monte Carlo simulation.

It turns out that in realistic systems the many-body wave function assumes very
small values in large parts of configuration space, so a straightforward procedure
using homogeneously distributed random points in configuration space is bound to
fail. This suggests that it might be efficient to use a Metropolis algorithm in which
a collection of random walkers is pushed towards those regions of configuration
space where the wave function assumes appreciable values. Suppose that we can
evaluateHψT for any trial functionψT, which we shall always assume to be real,
and let us define

EL(R) =
HψT(R)
ψT(R)

(12.2)

(we omit the� -dependence ofψT). EL(R) is called thelocal energy: it is a function
which depends on the positions of the particles and it is constant ifψT is the exact
eigenfunction of the Hamiltonian. The more closelyψT approaches the exact wave
function (apart from a multiplicative constant), the less strongly willEL vary with
R.

The expectation value of the energy can now be written as

〈E〉=
∫

dRψ2
T(R)EL(R)

∫

dRψ2
T(R)

. (12.3)

Let us now construct a Metropolis-walk in the same spirit as in ordinary Monte
Carlo calculations, but now with a stationary distributionρ(R) given by

ρ(R) =
ψ2

T(R)
∫

dR′ ψ2
T(R

′)
. (12.4)

The procedure is now as follows.

PutN walkers at random positions;
REPEAT
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Select next walker;
Shift that walker to a new position, for example by moving one

of the particles in the system within a cube with a suitably
chosen sized;

Calculate the fractionp= [ψT(R′)/ψT(R)]
2, whereR′ is the new and

R the old configuration;
If p< 1 the new position is accepted with probabilityp;
If p≥ 1 the new position is accepted;

UNTIL finished.

The expectation value of the local energy is now calculated as an averageover the
samples generated in this procedure, excluding a number of steps at the beginning,
necessary to reach equilibrium. The decision to stop the simulation is based on the
precision achieved and on the available processor time.

The algorithm should work in principle with a single walker. However, chances
are that this walker gets stuck in one favourable region surrounded by barriers
which are difficult to overcome. Using a large collection of walkers reduces this
effect.

12.2.2 Sample programs and results

We demonstrate the VMC approach with some simple programs. Here and in the
rest of this chapter, when dealing with many-particle systems, we shall assume units
of mass, distance and energy to be such that the kinetic energy operator occurs in
the Schr̈odinger equation as−∇2/2.

We start with the harmonic oscillator in one dimension, described by the
Hamiltonian (in dimensionless units):

Hψ(x) =

[

−1
2

d2

dx2 +
1
2

x2
]

ψ(x). (12.5)

The exact solution for the ground state is given by exp(−x2/2) with energyEG =
1/2; we shall use the trial function exp(−αx2). The exact solution lies therefore in
the variational subspace. The local energy is given by

EL = α +x2
(

1
2
−2α2

)

. (12.6)

For α = 1/2 the local energy is 1/2, independent of the position and we shall
certainly find an energy expectation value 1/2 in that case (this might happen
even when the program contains errors!). The crucial test is whetherthis energy
expectation value is a minimum as a function ofα . In table 12.1 we show that this
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Table 12.1: Variational Monte Carlo energies for the harmonic oscillator and the hydrogen
atom and the helium atom for various values of the variational parameters. In each case,
400 walkers have been used and 30000 displacements per walker were attempted. The first
4000 of these were removed from the data to ensure equilibrium. The expectation value〈E〉
of the ground state energy is given, together with the variance in this quantity, var(〈E〉). For
the harmonic oscillator, also the analytical values for theenergies and variance are given
(Evar and var(E)v).

Harmonic oscillator
α 〈E〉 var(〈E〉) Ev var(E)v
0.4 0.5124(1) 0.02521(5) 0.5125 0.0253125
0.45 0.50276(4) 0.00556(2) 0.50278 0.00557
1/2 1/2 0 1/2 0
0.55 0.50232(6) 0.00454(1)(1) 0.5022727 0.0045558
0.6 0.5084(1) 0.0168(4) 0.508333 0.0168056

Hydrogen atom Helium atom
α 〈E〉 var(〈E〉) α 〈E〉 var(〈E〉)
0.8 -0.4796(2) 0.0243(6) 0.05 −2.8713(4) 0.1749(2)
0.9 -0.4949(1) 0.0078(2) 0.075 −2.8753(4) 0.1531(2)
1.0 -1/2 0 0.10 −2.8770(3) 0.1360(2)
1.1 -0.4951(2) 0.0121(4) 0.125 −2.8780(4) 0.1223(2)
1.2 -0.4801(3) 0.058(2) 0.15 −2.8778(3) 0.1114(2)

0.175 −2.8781(3) 0.1028(2)
0.20 −2.8767(4) 0.0968(2)
0.25 −2.8746(10) 0.0883(2)

is indeed the case. We also show the variance of the energy. This quantity will
be small ifEL is rather flat, and this will be the case whenψT is close to the exact
ground state: the closerψT is to the ground state wave, the smaller the variance, and
this quantity reaches its minimum value at the variational minimum of the energy
itself. Again, in this particular case where the trial wave function can becomeequal
to the exact ground state, the variance becomes zero. From the table we see that the
variance decreases indeed to 0 when the ground state is approached. Interestingly,
for this simple case, it is possible to calculate the expectation value of the energy
as a function ofα by integrating the local energy weighted byψ2

T. The Gaussian
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form of the trial wavefunction makes the integral solvable with the result

Ev =
1
2

α +
1

8α
. (12.7)

The same can be done for the variance with the result

var(E)v =
(1−4α2)2

32α2 . (12.8)

The Monte Carlo results match the analytical values as is clear from the Table.Also
in table 12.1 we show results for the hydrogen atom with the Hamiltonian

H =−1
2

∇2− 1
r
. (12.9)

The exact ground state with energyE = −1/2 is given ase−r ; we take variational
trial functions of the forme−αr , so that the ground state is again incorporated in the
variational subspace. Although we could consider the present problemas a one-
dimensional one by using the spherical symmetry of the potential and the ground
state wave function, we shall treat it here as a fully three-dimensional problem to
illustrate the general approach. For this case, the analytical values of theaverage
local energy and variance can also be calculated. This is left as an exercise for the
reader.

The local energy is given by

EL(r) =−1
r
− 1

2
α
(

α − 2
r

)

. (12.10)

It is seen from table 12.1 that the energy is minimal at the ground state and thatits
variance vanishes there too.

Finally we consider the helium atom, which we have studied extensively already
in Chapter 4 and 5. Constructing good trial functions is a problem on its own –here
we shall use the form:

ψ(r1, r2) = e−2r1e−2r2e
r12

2(1+αr12) (12.11)

where r12 = |r1 − r2|. This function consists of a product of two atomic
one-electron orbitals and a correlation term. The local energy now has theform:

EL(r1, r2) =−4+(r̂1− r̂2) · (r1− r2)
1

r12(1+αr12)2

− 1
r12(1+αr12)3 −

1
4(1+αr12)4 +

1
r12

(12.12)



404 Quantum Monte Carlo methods

With r̂ we denote a unit vector alongr , and r12 is the distance between thetwo
electrons. Energies and variances are also displayed in table 12.1. The variance
does not have a sharp minimum for the same value ofα as the energy. The reason
is that most of the variance is due to the trial wave function not being exact, even for
the best value ofα . The optimum value of the energy,−2.8781±0.0005 should
be compared with the Hartree-Fock value of−2.8617 a.u. and the DFT value of
−2.83 a.u, and with the exact value of−2.9037 a.u. The VMC value can obviously
be improved by including more parameters in the wave function. The wave function
is apparently not perfect. One of its deficits can be appreciated by considering the
case where one of the electrons is far away from the nucleus and the other electron.
Then the trial wave function depends on the position of this particle similar to
the wave function of the helium ion,i.e. it is the asymptotic wave function for an
electron in the field of aZ= 2 nucleus. In reality however, the wave function should
‘see’ a chargeZ = 1 as the other electron shields of one unit charge.

It is possible to adjust the value of the paramersα in these simulations ‘on
the fly’.6 To this end, we need a minimum finder. The most efficient minimum
finders use the gradient of the function to be minimised (see Appendix A). This
is a problem, as a finite difference calculation of the gradient is bound to fail:the
derivatives of stochastic variables are subject to large numerical errors. However,
from the analytic derivative of the wave function with respect toα , we can sample
this derivative over the population of walkers. From (12.3) we see that

dE
dα

= 2

(〈

EL
d lnψT

dα

〉

−E

〈

d lnψT

dα

〉)

. (12.13)

Using a simple damped steepest decent method:

αnew= αold− γ
(

dE
dα

)

old
, (12.14)

the method then finds the optimal value (and therefore also the energy)forα . This
method works remarkably well for the harmonic oscillator, where,starting from
α = 1.2, the correct valueα = 0.5 is found in a small fraction of the time needed
for accurately evaluating one of the points in Table 12.1. However, the success in
this particular case is partly due to the exact solution being in the family of solutions
considered. The method is generalised straightforwardly to more parameters. It has
been applied sucessfully to electrons in quantum dots.6

The reader is invited to write the programs described and check the results with
those given in table 12.1.
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12.2.3 Trial functions

The trial wave function for helium, Eq. (12.11), is the two-particle version of the
general ground state trial wave function used in quantum Monte Carlo calculations
of fermionic systems:

ψ(x1, . . . ,xN) = ΨAS(x1, . . . ,xN)exp

[

1
2

N

∑
i, j=1

φ(r i j )

]

. (12.15)

ΨAS is the Slater-determinant (see Chapter 4) andφ is a function which contains
the two-particle correlation effects. For identical bosons, all the minus-signs in the
determinant are replaced by pluses. The particular form we chose in the helium case
is a simple form of a class called Padé-Jastrow wave functions.7 Inclusion of three
and four point correlations is obviously possible. We shall not go into the problem
of finding the best Slater determinants andφ -functions but restrict ourselves to
a short discussion of the requirements which we can derive for specialparticle
configurations – these are the ‘cusp conditions’: boundary conditions satisfied at
the points where the potential diverges. Near these points the kinetic and potential
energy contribution of the Hamiltonian are both very large, and they should cancel
out for a large part. This leads to large statistical fluctuations which are avoided
by respecting the cusp conditions. In the next section we shall see that these cusp
conditions are essential for trial wave functions used in the DMC method. We
have dealt already with a similar problem in the Chapter 2 of this book, when
we found appropriate boundary conditions for the numerical solution of the radial
Schr̈odinger equation with a Lennard-Jones potential, which diverges strongly at
r = 0. Now we consider singularities in the Coulomb potential.

In the helium atom, the potential diverges when one of the electrons approaches
the nucleus, or when the electrons are close to each other. The Schrödinger equation
can be solved analytically for these configurations since the Coulomb potential
dominates all other terms except the kinetic one. Suppose that one of the electrons,
labelledi, is very close to a nucleus (which we take at the origin) with chargeZ. In
that case the Schrödinger equation becomes approximately

[

−1
2

∇2
i −

Z
r i

]

ψ(r1, . . . , rN) = 0. (12.16)

Writing out the kinetic energy in spherical coordinates of particlei, we arrive at a
radial Schr̈odinger equation of the form (r = r i)

[

d2

dr2 +
2
r

d
dr

+
2Z
r

− l(l +1)
r2

]

R(r) = 0. (12.17)
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If, as is usually the case, the wave function is radially symmetric inr i for r i small,
we have exclusively anl = 0 contribution, and the two terms containing the factor
1/r must cancel (the first term does not contribute for a function which is regular
at the origin). ForR(0) 6= 0 this leads to

1
R

dR
dr

=−Z, r = 0; (12.18)

so thatR(r) = exp(−Zr).
For l > 0, the radial wave function is written in the formr l ρ(r) whereρ does not

vanish atr = 0. Analysing this in a way similar to thel = 0 case leads to the cusp
condition

1
ρ(r)

dρ(r)
dr

=− Z
l +1

. (12.19)

Note that this form is the same as (12.18) if we putl = 0.
Another cusp condition is found for two electrons approaching each other.

Considering the trial wave function of the helium atom, Eq. (12.11), we see that
it is the dependence on the separationr between the two electrons which must
incorporate the correct behaviour in this limit. The resulting radial equation for
ther dependence is the same as for the electron–nucleus cusp except for the−Z/r
potential being replaced by 1/r (the Coulomb repulsion between the two electrons),
and the kinetic term being twice as large (because the reduced mass of the two
electrons is half the electron mass):

[

2
d2

dr2 +
4
r

d
dr

− 2
r
− l(l +1)

r2

]

R(r) = 0. (12.20)

The cusp condition, written in terms ofρ(r) = r−l R(r), is therefore

1
ρ(r)

dρ(r)
dr

=
1

2(l +1)
. (12.21)

The right hand side reduces to 1/2 in the usual case of an s-wave function (l = 0).
For like spins, the value of the wave function must vanish if the particles approach
each other; therefore the wave function with lowest energy is a p-state and the
right hand side will reduce to 1/4. For a general system, containing more than two
electrons, we have this cusp condition for each electron pairi j . It is recommended
to have a look at problem 12.5 to see how cusp conditions are implemented in
practice.
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12.2.4 Diffusion equations, Green’s functions and Langevin equations

In the following sections we shall discuss several QMC methods in which the
ground state of a quantum Hamiltonian is found by simulating a diffusion process.
In the next section for example, we shall use such a simulation to improve on the
variational method described above. In this section, we give a brief overview of
diffusion and the related equations.

Consider a one-dimensional discrete axis with sites located atna, with integern.
We place a random walker on a site, and this walker jumps from site to site with
time intervalsh. The walker can only jump from a site to its left or right neighbour.
Both jumps have a probabilityα to occur, and the walker remains at the current
position with probability 1−2α . This is clearly a Markov process as described in
Section 10.3. We are interested in the probabilityρ(x, t) to find the walker at site
x= naat timet = mh, wheren andmare both integer. This probability satisfies the
master equation of the Markov process:

ρ(x, t +h)−ρ(x, t) = α [ρ(x+a, t)+ρ(x−a, t)−2ρ(x, t)]≈ αa2 ∂ 2ρ(x, t)
∂x2 .

(12.22)
For smallh, the left hand side can be written ash(∂ρ/∂ t), and definingγ = a2α/h,
we can write the continuum form of the master equation (for smalla) as

∂ρ(x, t)
∂ t

= γ
∂ 2ρ(x, t)

∂x2 . (12.23)

This equation is called thediffusion equation: it describes how the probability
distribution of a walker evolves in time. It may equivalently be interpreted as the
density distribution for a large collection of independent walkers.

Consider the following function:

G(x,y; t) =
1√

4πγt
e−(x−y)2/(4γt). (12.24)

This function has the following properties:

• Considered as a function ofy and t, keepingx fixed, it is a solution of the
diffusion equation fort > 0.

• For t → 0, G reduces to a delta-function:

G(x,y; t)→ δ (x−y) for t → 0. (12.25)
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G is called theGreen’s functionof the diffusion equation. This function can be
used to write the time evolution of any initial distributionρ(x,0) of this equation
in integral form:

ρ(y, t) =
∫

dx G(x,y; t)ρ(x,0), (12.26)

which can easily be checked using the properties ofG. Inspection of the Green’s
function shows that it is normalised, that is,

∫

dy G(x,y; t) = 1, independent ofx
andt.

The Green’s function can be interpreted as the probability distribution of a single
walker which starts off at positionx at t = 0. We can useG to construct a new
Markov process corresponding to the diffusion equation. We discretisethe time in
steps∆t. We start with a walker localised atx at t = 0. Then we move this walker
to a new positiony at time∆t with probability distributionG(x,y;∆t). From this,
we move the walker to a new positionz at time 2∆t with probability distribution
G(y,z;∆t). We have therefore a Markov process with transition probability given
by G:

T∆t(x→ y) = G(x,y;∆t). (12.27)

Using the properties of the Green’s function it can be shown that the detailed
balance condition for the master equation for the Markov process leads to the
integral form (12.26), so that the Markov process indeed models the diffusion
process described by (12.23) (check this). The difference betweenthis process and
the previous one on the discrete lattice, is that we now use the continuum solution
of the former version, which should be much more efficient, as a single step in
the continuum diffusion process represents a large number of steps in thediscrete
diffusion process. The Markov process described by (12.27) can be summarised by
the equation

x(t +∆t) = x(t)+η
√

∆t, (12.28)

whereη is a Gaussian random variable with variance 2γ:

P(η) =
1√
4πγ

e−η2/(4γ). (12.29)

This result can be understood by realising that a step in the Markov process (12.27)
is distributed according to a Gaussian with width

√
2γ∆t. In this form, the process is

recognised as a Langevin equation for discrete time. Note that a random momentum
rather than a random force is added at each step, in contrast to the Langevin
equation discussed in Section 8.8.

The general form of the diffusion equation is

∂ρ
∂ t

= L ρ(x, t), (12.30)
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where L is a second order differential operator. The formal solution of this
equation with a given initial distributionρ(x,0) can be written down immediately:

ρ(x, t) = etL ρ(x,0) (12.31)

but as this involves the exponential of an operator (which is to be considered as an
infinite power series), it is not directly useful. Using Dirac notation, the Green’s
function can formally be written as

G(x,y; t) =
〈

x
∣

∣

∣etL
∣

∣

∣y
〉

, (12.32)

which indeed satisfies the equation (12.31) as a function ofy and t, and which
reduces toδ (x− y) for t = 0. The diffusion equation can only be used to
construct a Markov chain if the Green’s function is normalised, in the sense that
∫

dy G(x,y; t) = 1, independent oft. This is not always the case, as we shall now
see.

A particular diffusion equation which we shall encounter later in this chapteris

∂ρ
∂τ

=
1
2

∂ 2ρ(x,τ)
∂x2 −V(x)ρ(x,τ). (12.33)

This looks very much like the one-dimensional time-dependent Schrödinger
equation for a zero-mass particle; in fact, this equation is recovered whenwe
continue the time analytically into imaginary timeτ = it – we useτ for imaginary
time. Using (12.31), we can write the solution as

ρ(x,τ) = eτ(−K−V)ρ(x,0) (12.34)

where K is the kinetic energy operatorK = p2/2 = −1/2(∂ 2/∂x2) (p is the
momentum operatorp= −i(∂/∂x) of quantum mechanics). The exponent cannot
be evaluated because the operatorsK andV do not commute. However, we might
neglect CBH commutators – this is only justified whenτ is small. To emphasise
that the following is only valid for smallτ, we shall use the notation∆τ instead of
τ. We have

e−∆τ(K+V) = e−∆τKe−∆τV +O(∆τ2) (12.35)

where the order∆τ2 error term results from the neglect of CBH commutators.
To find the Green’s function explicitly, we must find the matrix element of the
exponential operator on the right hand side. The term involving the potential is
not a problem as this is simply a function ofx. It remains then to find the matrix
elements of the kinetic operator:

GKin(x,y;∆τ) =
〈

x
∣

∣

∣e−∆τ p̂2/2
∣

∣

∣y
〉

(12.36)
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where p̂ is the momentum operator – we have used the caret ˆ to distinguish the
operator from its eigenvalue.

The Green’s function can be evaluated explicitly by inserting two resolutionsof
the unit operator of the form

∫

dp |p〉〈p| and using the fact that

〈x|p〉= 1√
2π

eipx (ℏ≡ 1). (12.37)

As the kinetic operator is diagonal in thep-representation, the matrix element is
then found simply by performing a Gaussian integral – the result is

GKin(x,y;∆τ) =
1√

2π∆τ
e−(x−x′)2/(2∆τ). (12.38)

This form is recognised as the Green function of the simple diffusion equation –
indeed our imaginary-time Schrödinger equation reduces to this equation forV ≡ 0,
and therefore the kinetic part of our Green’s function should preciselybe equal to
the Green’s function of the simple diffusion equation. We have derived thisform
explicitly here, because we need to find the Green’s function for a more complicated
type of diffusion equation along the same lines below.

The full Green’s function for the diffusion equation (12.33) reads:

G(x,y;∆τ) = GKin(x,y;∆τ)e−∆τV(y)+O(∆τ2). (12.39)

Unfortunately, the term involving the potential destroys the normalisation of the
full Green’s function, and this prevents us from using it to construct a Markov
chain evolution, which is convenient, if not essential, for a successful simulation
as we shall see later. We can make the transition rate Markovian by normalising
it – this can be done by multiplying the Green’s function by a suitable prefactor
exp(τET). Of course we do not know beforehand what the value of this prefactor
is, but we shall describe methods for sampling its value in Section 12.3. The new,
normalised, Green’s function is no longer the Green’s function for equation (12.33),
but for a modified form of this equation, in which the potential has been shifted by
an amountET:

∂ρ
∂τ

=
1
2

∂ 2ρ(x,τ)
∂x2 − [V(x)−ET]ρ(x,τ). (12.40)

If we chooseET such that the Green’s function is normalised, it describes a Markov
process, hence there will be an invariant distribution. This invariant distribution is
determined by Eq. (12.40), which for stationary distributions reduces to

−1
2

∂ 2ρ(x)
∂x2 +V(x)ρ(x) = ETρ(x), (12.41)
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which is the stationary Schrödinger equation!

For many problems, it is convenient to construct some Markovian diffusion
process which has a predefined distribution as its invariant distribution. This turns
out to be possible, and the equation is called theFokker-Planck(FP) equation. It
has the form

∂ρ(x, t)
∂ t

=
1
2

∂
∂x

[

∂
∂x

−F(x)

]

ρ(x, t). (12.42)

The ‘force’ F(x) is related to the invariant distributionρ(x) – the relation is given
by

F(x) =
1

ρ(x)
dρ(x)

dx
. (12.43)

It can easily be checked thatρ(x) satisfies (12.42) when the time derivative
occurring in the left hand side of this equation is put equal to zero.

The Green’s function can be found along the same lines as that of the kinetic
part of the Green’s function for the imaginary time Schrödinger equation. We must
work out

G(x,y; t) =
〈

x
∣

∣

∣
e−∆t p̂[p̂−iF (x̂)]/2

∣

∣

∣
y
〉

. (12.44)

We again separate the exponent into two separate terms, one containing ˆx and the
otherp̂, at the expense of anO(∆t2) error. Calculating Gaussian Fourier transforms
as before, we obtain the result:

G(x,y;∆t) =
1√

2π∆t
e−[y−x−F(x)∆t/2]2/(2∆t). (12.45)

Note that this expression is a first order approximation in∆t of the exact Green’s
function. This is normalised, and we can therefore use it again for constructing a
Markov chain. This is done by moving the random walker first from its old position
x to the positionx+ F(x)∆t/2 and then adding a random displacementη

√
∆t,

whereη is drawn from a Gaussian distribution with a variance 1 [see Eq. (12.29)].
In formula, the method reads

x(t +∆t) = x(t)+∆tF[x(t)]/2+η
√

∆t, (12.46)

so it is a discrete Langevin equation with ‘force’F .
We end this section with a few remarks. First, all results can be extended

straightforwardly to higher dimensions. Using a 3N-dimensional variableR instead
of the one-dimensional variablex (R denotes the positions of a set of particles in
three dimensions as usual), the Green’s function of the simple diffusion equation
Eq. (12.23) withγ = 1/2 is

G3N(R,R
′; t) =

1

(2πt)3N/2
e−(R′−R)2/(2t). (12.47)



412 Quantum Monte Carlo methods

The Green’s function of the Fokker-Planck equation (12.42) becomes

G3N(R,R
′;∆t) =

1

(2π∆t)3N/2
e−[R′−R−∆tF(R)/2]2/(2∆t), (12.48)

whereF(R) is a three-dimensional vector, given by

F(R) = ∇Rρ(R)/ρ(R). (12.49)

You might have been surprised by the way in which the exponential containing
noncommuting operators was split in Eq. (12.35). After all, the following splitting

e−∆τ(V+K) = e−∆τV/2e−∆τKe−∆τV/2+O(∆τ3) (12.50)

is more accurate – you can check that the first order CBH commutator vanishes,
hence theO(∆τ3) error. The reason why we use the simpler splitting (12.35) is that
diffusion steps are carried outsuccessively, hence the rightmost term in the right
hand side of (12.50) at one step combines with the leftmost term at the next step,
so that the total effect of the more accurate splitting is reduced to a different first
and final step. This difference is, however, of the same order of magnitude as the
accumulated error of the sequence of steps, and therefore it does notpay off to use
(12.50).

12.2.5 The Fokker-Planck equation approach to VMC

The VMC method described in Section 12.2.1 and 12.2.2 has an important
disadvantage: typical many-particle wave functions are very small in largeparts
of configuration space and very large in small parts of configuration space. This
means first of all that we might have a hard job in finding the regions where
the wave function is large and secondly that attempted moves of walkers froma
favourable region (where the wave function is large) will be rejected when they
move out of that region. Having a substantial fraction of rejected moves is part of
any Metropolis Monte Carlo scheme, and we could live with that if there did not
exist a more efficient approach, based on the Fokker-Planck equationdescribed in
the previous section.

In this method we try to sample the functionρ(R) = ψ2
T(R) rather than the trial

functionψT(R) itself, that is, we use

F = 2∇RψT(R)/ψT(R) (12.51)

in the FP equation.
The distributionρ(R, t) can be sampled by simulating a diffusion process. The

algorithm is close to that of ordinary VMC. Now we let a collection of walkers
diffuse with probabilities given by the Green’s function (12.45):
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PutN walkers at random positions;
REPEAT

Select next walker;
Shift that walker from its current positionR to R+F(R)∆t/2;
Displace that walker by an amount�

√
∆t, where� is a

random vector with a Gaussian distribution[see (12.29) and
(12.28)];

UNTIL finished.

We see that there is no acceptance/rejection step; this causes the gain in efficiency
when using the FP approach.

Note that we have made a time-step error of order(∆t)2. It is possible to eliminate
this error by combining this Langevin approach with a Metropolis procedure. The
point is that we know the form of stationary distributionρ (it is the square of the
trial functionψT), and the Langevin process leads to a distribution which is close
to, but not exactly equal to this distribution. The Metropolis algorithm can give
us the desired distributionρ by acceptance/rejection of the Langevin steps, which
themselves are considered as trial moves in the Metropolis algorithm. Referring
back to Section 10.3, we call the transition probability of the Langevin equation
ωRR′ = G(R,R′;∆t), whereG is given in (12.48). This is not symmetric inRandR′

asF depends only onR, and therefore we have to use the generalised Metropolis
algorithm, described at the very end of Section 10.3. The Langevin trial move is
accepted with probability min(1,qRR′), where

qRR′ =
ωR′Rρ(R′)
ωRR′ρ(R)

. (12.52)

Note that the fractionωR′R/ωRR′ is in equilibrium approximately equal to the ratio
ρ(R)/ρ(R′) – if no time step error was made in constructingωRR′ , they would have
been exactly equal – therefore,qRR′ is always close to 1. The acceptance rate is
therefore always high when∆t is taken small, and the method is very efficient.
The Metropolis acceptance/rejection step is merely a correction for the time step
discretisation error made in the Langevin procedure.

The implementation of the algorithm is straightforward. The resulting energies
must be the same as for the standard VMC method, however, the error barsare
smaller. As an example, an MC simulation for the harmonic oscillator using 300
walkers which perform 3000 steps andα = 0.4, yields for the energy expectation
in the ordinary VMC program valueE = 0.51± 0.03, to be compared withE =
0.515±0.006 in the Fokker-Planck program.

Variational Monte Carlo has the advantage that it is simple and straightforward.
An important disadvantage is that it relies on the quality of the trial function, hence
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subtle but important physical effects are sometimes neglected when they arenot
taken into account when constructing the trial function.

12.3 Diffusion Monte Carlo

12.3.1 Simple diffusion Monte Carlo

The second quantum Monte Carlo method which we consider is the so-called
diffusion or projector Monte Carlo method, abbreviated as DMC. This method
does not use variational principles for obtaining ground state properties, but as we
shall see in the sequel, the convergence rate of the practical version ofthis method
relies heavily on the accuracy of the trial functions. The idea of this method has
already been sketched in Section 12.2.4. We use the imaginary time form of the
time-dependent Schrödinger equation. This is a diffusion equation with a potential.
We use the Green’s function in the ‘normalised’ form, i.e. with the normalisation
factor exp(−∆τET) present:

G(R,R′;∆τ) = e−∆τ[V(R)−ET]
1√

2π∆τ
e−(R−R′)2/(2π∆τ)+O(∆τ2). (12.53)

This Green’s function is a short-time approximation of the imaginary-time operator
exp[−τ(H +ET)]. If we resolve this operator in its eigenstates|φn〉, we obtain

e−τ(H−ET) = ∑
n
|φn〉e−τ(En−ET)〈φn|. (12.54)

For large τ the ground state energyEG dominates in the sum by a factor
exp[−τ(E1−EG)]; therefore it acts as a projector onto the ground state (for large
enough times).

As we have the explicit form of the time evolution operator at our disposal only
in a short-time approximation, we have to perform many short time steps before
the distribution will approach the ground state wave function.

In the simulation, a collection of walkers diffuses through configuration space.
Every diffusion step consists of two stages: a diffusion step and abranching step.
In the diffusion step, the walkers are moved to a new position with a transition
rate given by the diffusive part of the Green’s function, i.e. the part due to the
kinetic energy. The term involving the potential is dealt with in the second stage.
Suppose we would assign a weight to each walker, then the effect of the potential
term could be taken into account by multiplying this weight for a walker which has
arrived at a positionR′ by a factor exp{−∆τ [V(R′)−ET]}.† It turns out that this

†It is also possible to multiply the weight by exp{−τ[(V(R′) + V(R))/2 − ET]}, which
corresponds to the symmetric distribution of the potential terms in the Green’s function as in (12.50).
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procedure is not very efficient. In the end quite a few walkers might havemoved to
unfavourable regions and represent small weight, but they require a similar amount
of computational effort as the more favourable ones. This problem was already
encountered in Section 10.6. More efficient would be to use computational effort
proportional to the significance of the region probed by a particular walker. This
is possible, by a ‘birth and death’, or ‘pruning and enrichment’ (Section 10.6) or
branchingprocess: poor walkers die, favourable ones give rise to new walkers.
More precisely, if a walker moves from a pointR to a new pointR′, we calculate
q= exp{−∆τ [V(R′)−ET]}. If q< 1, the walker survives with a probabilityq and
dies with probability 1−q. If q> 1, the walker gives birth to either[q−1] or [q] new
ones atR, where[q] represents the integer part (truncation) ofq. The probability
for having[q] new walkers is given byq− [q], and[q−1] new walkers will come
into existence with the complementary probability 1+[q]−q. An efficient way of
coding this is to add a uniform random numberr between 0 and 1 toq: for s= q+ r,
[s] new walkers are created; if[s] = 0 then the walker is deleted.

Finally, we must specify howET is found. Remember that this value is ideally
chosen such as to normalise the overall transition rate in the process. Such
is necessary to prevent the population from growing or decreasing steadily. A
growing population would cause a steady increase in the computer time per
diffusion step, whereas a decrease leads to bad statistics, if not a vanishing
population! The energyET is in fact determined by keeping track of the change in
population and adjusting it at each step in order to keep the population sTable. The
average value ofET after many steps will then converge to the ground state energy
as we have already seen in Section 12.2.4. Suppose we have a target number of M̃
walkers in our simulation and that after the last branching step their actual number
is M, then we adjustET as

ET = E0+α ln

(

M̃
M

)

(12.55)

whereE0 is close to the ground state energy (our ‘best estimate’), andα is some
small parameter.

In an algorithmic form, the resulting procedure can be presented as follows:

Put the walkers at random positions in configurational space;
REPEAT

FOR all walkers DO
Shift walker from its positionR to a new positionR′

according to the Gaussian transition probability (12.24);
Evaluateq= exp{−∆τ [V(R′)−∆τET]};
Eliminate the walker or create new ones atR′,
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depending ons= q+ r, wherer is random,
uniform between 0 and 1;

END FOR;
UpdateET;

UNTIL finished.

The major difference with the variational Monte Carlo method described in the
previous section is that the present method does not rely on a trial functionand
therefore the results have no systematic error due to the trial function being(in
general) not exact. There is, however, an error due to the fact that we have split
the time evolution operator into two parts, one depending on the kinetic energy and
the other on the potential, by neglecting Campbell-Baker-Haussdorf commutators.
By reducing∆τ we can make this error arbitrarily small, but the convergence speed
will be reduced accordingly. In Section 12.3.3, we shall describe a Metropolis
algorithm to correct for the discretisation error.

The population itself should represent the ground state wave function. For a
one-dimensional problem (or a radially symmetric three-dimensional problem)this
can be checked by constructing a histogram in which the frequencies with which
the various positions are occupied are recorded. Below we shall give some results
of DMC simulations for the harmonic oscillator and the helium atom.

The DMC procedure outlined here might fail in some cases. The distribution
of walkers can only represent a density which is positive everywhere.Therefore,
it can sample the ground wave function only if the latter is everywhere positive.
Fortunately, the ground state of a boson system is indeed everywhere positive.
However, in the case of fermions this is no longer the case – moreover, the Green’s
function is no longer positive in that case and it is not clear how to performthe
diffusion, as the transition probability should be positive. This is called thefermion
problem. We shall come back to this later. Another problem arises when the
interaction potential assumes strongly negative values. This will be discussed in
some detail in the next section and then we shall consider a refinement of theDMC
which is not susceptible to this problem.

12.3.2 Applications

We apply the DMC procedure first to the three-dimensional harmonic oscillator.
The exact ground state wave function is given by

ψ(r) =
1

(2π)3/2
e−r2/2; (12.56)

the energy is 3/2 (in dimensionless units). It should be noted that the probability
distribution for finding a walker at a distancer from the origin is given by the
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Figure 12.1: Ground state wave function (timesr2) for the three-dimensional harmonic
oscillator as resulting from the DMC calculation (dots) compared with the exact form,
scaled to match the numerical solution best.

wave function timesr2, because the volume of a spherical shell of thicknessdr
is 2πr2dr. For an average population of 300 walkers executing 4000 steps and a
time stepτ = 0.05, we findEG = 1.506± 0.015, to be compared with the exact
value 11

2. The distribution histogram is shown in Figure 12.1, together with the
exact wave function, multiplied byr2 and scaled in amplitude to fit the DMC
results best. Ground state energy and wave function are calculated with quite good
accuracy. Note that these results are obtained without using any knowledge of the
exact solution: the diffusion process ‘finds’ the ground state by itself.

Next we analyse the helium atom using the diffusion Monte Carlo method. This
turns out less successful. The reason is that writing the time evolution operator as
a product of a kinetic and potential energy evolution operator

e−∆τ(K+V−ET) = e−∆τKe−∆τ(V−ET)+O(∆τ2) (12.57)

is not justified when the potential diverges, as is the case with the Coulomb potential
at r = 0. Formally, this equation is still true, but the prefactor of theO(∆τ2)
term diverges. However, even if the potential does not diverge but varies strongly,
the statistical efficiency of the simulation is low. This is due to the fact that if a
walker moves to a very favourable region, it will branch into many copies. They
are however all the same, and together they form a rather biased sample ofthe
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distribution in that region. It requires some time before they have diffused and
branched in order to form a representative ensemble. Frequent occurrence of such
strong branching events will degrade the efficiency considerably. Quitegenerally
one can say that the efficiency increases with the flatness of the potential.

There exist, in principle, two ways to solve the divergent potential problem.The
first one consists of finding a better alternative to the simple approximation to the
time evolution operator than in (12.57). Such approximations have been devised
and we shall consider these in the context of path integral Monte Carlo, – see
Section 12.4. The common procedure however is to use aguide function, which
transforms the original Schrödinger equation into a new one with a flatter potential,
just as in the case of the Fokker-Planck variational Monte Carlo method. This
method will be described in the next section.

12.3.3 Guide function for diffusion Monte Carlo

As we have seen in the previous subsection, the diffusion Monte Carlo method
causes problems if the potential is unbounded, and this is the case in almost every
many-particle system. Sampling some other function instead of the ground state
wave functionψ might cure this problem.

A suitable function isρ(R,τ) = ψ(R,τ)ΨT(R) where ΨT(R) is some trial
function which models the exact wave function in a reasonable way. It turns out
thatρ satisfies a Fokker-Planck type of equation:

∂ρ(R,τ)
∂τ

=
1
2

∇R[∇R−F(R)]ρ(R,τ)− [EL(R)−ET]ρ(R,τ). (12.58)

Here, the ‘force’F(R) is again given as 2∇RΨT(R)/ΨT(R) – this form differs
from (12.49) because (12.58) is not a ‘pure’ Fokker-Planck equation: it contains
a ‘potential term’EL(R)−ET. The ‘local energy’EL(R) is given as usual by

EL(R) =
HΨT(R)
ΨT(R)

=
−∇2ΨT(R)/2+V(R)ΨT

ΨT(R)
. (12.59)

The FP-diffusion term will be used to diffuse the walkers, whereas the ‘potential’
EL(R)−ET is used in a branching process. By writing out all the terms on the left
and right hand sides of Eq. (12.58), it can be checked that this equationreduces to
the imaginary time-dependent Schrödinger equation (12.33).

The procedure is now a combination of the Fokker-Planck VMC, and of theDMC
method without guide function: we let the walkers diffuse just as in the Fokker-
Planck VMC method, with a transition probability

T∆τ(Rn → Rn+1) =
1√

2π∆τ
exp
{

− [Rn+1−Rn−F(Rn)∆τ/2]2/(2∆τ)
}

. (12.60)
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Then branching is performed, according to the valueq= exp{−∆τ [EL(R)−ET]}.
What do we gain by this method? We avoid problems of the kind encountered
above with strongly varying potentials. The role ofV in standard DMC is now
taken over byEL(R), which is (hopefully) rather flat. IfΨT(R) were anexact
eigenstate, thenEL would be independent ofR. If ΨT is a reasonable approximation
to the ground state, thenEL(R) is reasonably flat, and the method will be reliable.
It is clear now why the cusp conditions are so important: they guarantee thatthe
trial function converges to the exact solution in those regions where the potential
diverges strongly – these are the points which cause problems. The methodusing
trial – or guide – functions was introduced by Kalos8 and is commonly called
importance sampling Monte Carlo.

We can again correct for the time step error using a Metropolis procedure, just as
we did for VMC in Section 12.2.5. Note thatG is not symmetric – therefore,
we must use the generalised Metropolis method in order to guarantee detailed
balance (see also the variational Fokker-Planck simulation). A trial displacement is
accepted with probability

min

(

1,
T∆τ(R′ → R)ρ(R′)
T∆τ(R→ R′)ρ(R)

)

(12.61)

and rejected otherwise.
With importance sampling, the algorithm reads:

Put the walkers at random positions in configurational space;
REPEAT

FOR all walkers DO
Shift walker from its positionR to a new positionR′

by first moving it over a distanceF∆τ/2 and then
adding a random displacement according to the
transition probability of Eqs. (12.28) and (12.29);

Accept the move with a probability given by (12.61);
IF Accepted THEN

Evaluateq= exp{−∆τ [(ELocal(R′)+ELocal(R))/2−ET]};
Eliminate the walker or create new ones atR′,

depending ons= q+ r, wherer is random,
uniform between 0 and 1;

END IF;
END FOR
UpdateET using (12.55);

UNTIL finished.
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Let us first apply the importance sampling method to the one-dimensional
harmonic oscillator. We use the same trial (or guide-) functionΨT(x) = e−αx2

as in the VMC simulation. In that case the quantum force is given by

F(x) =−4αx, (12.62)

and the local energy by Eq. (12.6). Indeed, the local energy is a constant if α = 1/2
and it will be slowly varying ifα is close to 1/2. For α = 0.4, a target number
of 6000 walkers and 4000 steps, we find for the ground state energyE = 0.5002±
0.0003 and withα = 0.6, E = 0.4998±0.0003.

We can now do the hydrogen and the helium atom problems. For hydrogen we
use a guide function exp(−αr) and a target number of 2000 walkers performing
4000 steps. The local energy is given by (12.10). Obviously, forα = 1 we find the
exact ground state energy of−0.5 Hartree as the local energy is constant and equal
to this value. Forα = 0.9, we find a ground state energy of−0.4967(5) and for
α = 1.1 we findEG = 0.5035(5). Both these values do not agree with the exact
value. The reason is that the guide function should solve the divergenceproblem at
r = 0, but it can do this only if the cusp conditions are satisfied. Forα 6= 1 this is
not the case. This shows the importance of the cusp conditions to be satisfiedfor
the trial function.

Finally we present results for the helium atom. We use the Padé-Jastrow wave
function (12.11). Varying the parameterα gives values above and below the
exact energy. If we monitor the variance of the energy, we find a minimum at
α ∼ 0.15 and an energyEG = −2.9029(2) for 1000 walkers performing 4000
steps. Remember the exact energy is−2.903 and the variational energy for the
uncorrelated wave function (the Hartree-Fock energy) is−2.8617 atomic units.

– Programming exercise –

Modify the DMC programs of the previous section to include a guide function and
compare the results with those given in this section.

12.3.4 Problems with fermion calculations

We have described how the simulation of a diffusion process can generatean
average distribution of random walkers which is proportional to the ground state
wave function or (in the case of guide function DMC) to the product of this function
and a trial function. A distribution of walkers can, however, representonly wave
functions which are positive everywhere. For bosons, this property issatisfied by
the ground state, but the same does not hold in the case of fermions. The difficulties
associated with treating fermions in quantum Monte Carlo, are generally denoted
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as ‘the fermion problem’. It should be noted that there is no fermion problemin
VMC.

12.3.4.1 The fixed-node method

There are several approaches to the fermion problem. The simplest approximation
is the fixed-nodemethod, in which the diffusion process is simulated as before,
except for steps crossing a node of the trial function being forbidden.The nodes of
the trial function divide the configuration space up into simply connected volumes
in which the trial wave function has a unique sign. These volumes are separated
from each other by nodal surfaces: hypersurfaces on which the wave function
vanishes. To understand why the fixed-node method is useful, supposethat we
would know the nodes of the exact ground state wave function. If we could solve
the ground state of the Schrödinger equation in each simply connected region
bounded by the nodal surfaces of the ground state wave function with vanishing
boundary conditions on these surfaces, this solution would be proportional to the
exact ground state of the full Hamiltonian in each region. In the fixed-nodesolution,
we solve the Schrödinger equation in connected regions bounded by the nodal
surfaces of the trial function instead of the exact ground state wave function, and
therefore the quality of the solution depends on how close these surfacesare to
those of the exact ground state. It can be shown2 that the resulting energy is a
variational upper bound to the exact ground state energy. It should benoted that
the fixed-node method often gives a substantial improvement over the variational
Monte Carlo method (which does not suffer from the fermion problem).

An additional problem with the fixed-node method is the fact that moves in
which two (or any even number of) nodal surfaces are crossed are accepted. This
introduces an error as the number of walkers in two regions separated byan even
number of node crossings does not necessarily represent the norm of the wave
functions on those regions. The degree to which we suffer from this increases
with the time step, as a larger time step will result in larger steps to be taken –
it introduces an extra time-step bias error which goes by the namecross-recross
error.

Let us study the nodes more carefully. The requirement thatψ(x1, . . . ,xN) = 0
(xi denotes the spin-orbit coordinate of electroni) defines the nodal surfaces. If
we assume the spins of theN fermions to be given, then the nodes form 3N−
1 dimensional hypersurfaces in the 3N-dimensional configurational space. The
obvious zeroes ofψ wheneverxi = x j for any pairi 6= j define a 3N−3 dimensional
scaffolding for the nodal surface structure. This scaffolding does not depend on
the particular form of the trial function. A node of a one-electron orbital inthe
Slater determinant occurring in the wave function should not be confusedwith a
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‘fermionic zero’, as such an orbital node does not force the many-electron wave
function to vanish: one of the electrons, sayi, might be at a zero of some orbital, but
the wave function also contains contributions with the coordinates of the electrons
permuted, and in general the coordinates of the other electrons are different from
those of electroni.

Changing the diffusion Monte Carlo method to a fixed-node simulation is easy.
Simply add the following step just after having generated a new trial position of
a particle, sayi. Check whether the trial wave function changes sign for this
displacement. If this is the case, the move is not accepted, otherwise proceed as
in the boson case. The interested reader can implement the fixed-node extension
and test it, for example, for Li taking an appropriate Slater determinant forthe guide
function. More details can be found in Ref. 9.

*12.3.4.2 The transient estimator method

In view of the variational error present in the fixed-node method it is worthwhile to
devise other methods. A method which does not depend on fixed nodal surfaces is
the transient estimatormethod. To understand how and why this method works, it
is important to realise that the Hamiltonian and hence the time evolution operator
is the same for fermions and for bosons. However, because the time evolution
operator is symmetric with respect to particle permutations, an antisymmetric
(fermionic) initial state will remain antisymmetric and a symmetric (bosonic) state
remains symmetric.

Let us split an arbitrary fermion wave functionφ up into two parts,φ− andφ+,
which contain the negative and positive parts ofφ respectively [all wave functions
depend on all the spin-orbit coordinatesX = (x1,x2, . . . ,xN), and on imaginary time
τ]:

φ+ =
1
2
(|φ |+φ) (12.63a)

φ− =
1
2
(|φ |−φ) , (12.63b)

so that
φ = φ+−φ−. (12.64)

Now perform two independent DMC calculations, one withφ− and the other with
φ+ as a starting distribution, whereφ is a trial fermion wave function. What will
happen? Applying the (exact) imaginary time evolution operatorT(X →Y;τ) to φ
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we obtain

φ(Y;τ) =
∫

dX T(X →Y;τ)φ(X;0) =
∫

dX T(X →Y;τ)φ+(X,0)−
∫

dX T(X →Y;τ)φ−(X,0) =

φ+(Y, t)−φ−(Y, t). (12.65)

This suggests that we can follow the time evolution ofφ by subtractingφ+(t) and
φ−(t) as produced in the two simulations. Asφ−(0) andφ+(0) are both positive,
and as the imaginary time evolution operator is always positive, the application of
the DMC approach causes no problems. In fact, one could also say that ifthe initial
wave function is positive everywhere, it contains no fermion character and hence
we have an unambiguous bosonic time evolution for such an initial state. A guide
function approach can be used in the two boson simulations.

As the time evolution operator contains no fermion-like features (see above),
both simulations will tend to the bosonic ground state solution for long times. The
fermion ground state wave function is an excited state solution of the many-particle
Hamiltonian, so the boson ground state contribution to the solution at imaginary
time τ will dominate the fermion contribution by a factor exp[τ(EF −EB)], where
EB andEF are the fermion and boson ground state energies respectively. Note that
this factor grows exponentially with time. The fermion ground state wave function
is thedifference between the two distributions resulting fromφ− andφ+, which
because of the foregoing analysis are both essentially boson-like. If weare to find
a fermion wave function as a small difference of two large, essentially boson wave
function distributions we must be prepared for large statistical errors. The analysis
given here is represented pictorially in Figure 12.2.

The analysis so far leads to the conclusion that, at the beginning, the difference
between the distributions is equal to the trial functionφ , and for large times it
converges to the exact fermion wave function, but it will be buried in the noise
of the boson solutions forming the bulk of the two distributions. We might be
lucky: if the trial function relaxes to the exact Fermi wave function quickly enough,
i.e. before the latter is buried in the ‘boson noise’, then we have an intermediate
(‘transient’) regime in imaginary time during which we might extract useful data
from the simulation. The trial energy which is adjusted to keep the respective
population sizes stable is no longer a suitable energy estimator as this will converge
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(a)

(b)

(c)

(d)

φ(τ=0)

φ+(τ=0) φ−(τ=0)

φ+(τ) φ−(τ)

φ(τ)

Figure 12.2: Evolution of the distributions in the transient energy estimator method. The
wave functionφ(τ = 0) is shown in (a); it can be written as the difference of theφ+ and
φ−. These two functions evolve separately and tend therefore to the same boson ground
state solution, as shown in (c). Subtracting the two wave functions in (c) gives the small
difference in (d), and this will be soon buried in the noise inthe solutions in (c).

to the boson energy. Therefore we use the ‘transient estimator’:

ETE(τ) =
∫

dX φ(τ)Hφ(τ = 0)
∫

dX φ(τ)φ(τ = 0)

=

∫

dX φ−(τ)Hφ(τ = 0)
∫

dX [φ+(τ)−φ−(τ)]φ(τ = 0)
−

∫

dX φ+(τ)Hφ(τ = 0)
∫

dX [φ+(τ)−φ−(τ)]φ(τ = 0)
.

(12.66)

As the wave functionφ(τ) converges to the exact fermion ground state, this
estimator will indeed relax to the exact fermion energy. As mentioned already,
the problem resides inφ(τ) to be extracted as the small difference between two
large distributions.

The estimator (12.66) is evaluated as follows. At timeτ, the walkers occupy
points in configurations space which are distributed according toφ±(τ). For a
walker at the pointX in the φ+-simulation we evaluateHφ(X,τ = 0) (for the
numerator) andφ(X,τ = 0) (for the denominator), and sum over walkers. We
do the same with theφ− simulation, but now give the contributions a minus sign.
The quantityHφ(X,τ = 0) can be evaluated becauseφ(X,τ = 0) is a trial function,
given in analytic form. The sum is divided by the sum ofφ(X,τ = 0) over all the
walkers.
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There exist several extensions to and refinements of the TE method, which are
beyond the scope of this book. A common characteristic of these methods is that
they are subject to instability in the errors for largeτ.

12.4 Path integral Monte Carlo

In Chapter 11 we saw that the partition function of a classical lattice spin system on
a strip can be evaluated by diagonalising the transfer matrix. The transfer matrix
can be considered as a kind of ‘time evolution operator’, which projects out the
eigenvector belonging to the largest eigenvalue (in absolute value). The relation
with the time evolution process described in the previous section is evident. The
transfer matrix effectively reduces the dimension of the classical system by one, but
the price we pay for this reduction is that the diagonalisation of the transfer matrix is
an expensive operation. In this section we consider the reverse transformation: we
shall transform a quantum mechanical system ind dimensions, which can be solved
by diagonalising the Hamiltonian matrix, to a classical system ind+1 dimensions.
This system can then be simulated with the Monte Carlo procedures describedin
Chapter 10. The new formulation enables us to obtain time-dependent properties,
or physical quantities of the system at finite temperature. For a very clear discussion
of the path integral concept, see the book by Feynman and Hibbs.10

12.4.1 Path integral fundamentals

The path integral method provides a way to calculate matrix elements and traces of
the time evolution operator of a quantum system in imaginary time:

T (τ) = e−τH (12.67)

which we have encountered in the previous section. If we interpret the imaginary
time as an inverse temperatureτ ↔ β and take the trace of the time evolution
operator, we obtain the partition functionZ of the quantum system at a finite
temperatureT:

Z(β ) = Tr
(

e−βH
)

=
∫

dR
〈

R
∣

∣

∣e−βH
∣

∣

∣R
〉

. (12.68)

R denotes the coordinates ofN particles. The path integral method enables us
to sample system configurations with the appropriate Boltzmann factor, so that
expectation values for a quantum system at a finite temperature can be evaluated.

The problem with expression (12.68) is that it contains the exponential of the
Hamiltonian, which, as mentioned already in Section 12.2.4, makes the trace of the
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time evolution operator difficult to evaluate. For short timesτ (or β ), this is not
a problem as we can write the Hamiltonian as a sum of several terms (e.g. kinetic
and potential energy) which themselves are easily tractable in an exponential – the
neglected CBH commutators yield systematic errors of orderτ2. What can we do
if τ is not small? In that case, we divide the timeτ up into many (sayM) small
segments∆τ = τ/M which can be treated in the short-time approximation. For a
system consisting ofN spinless particles with coordinatesRi , the partition function
can be written as
∫

dR0
〈

R0|e−τH |R0
〉

=
∫

dR0 dR1 . . .dRM−1

〈

R0|e−∆τH |R1
〉〈

R1|e−∆τH |R2
〉

· · ·
〈

RM−1|e−∆τH |R0
〉

. (12.69)

We have insertedM − 1 unit-operators
∫

dRi |Ri〉〈Ri | between the short-time
evolution operators. The procedure in which time is divided up into many short
segments is calledtime-slicing. The fact that the first and the last state in the product
of matrix elements are identical (|R0〉) implies that we have periodic boundary
conditions in theτ-direction.

We know the matrix elements of the short-time evolution operator – it has been
derived in Section 12.2.4:

T(R,R′;∆τ) =
〈

R|e−∆τH |R′〉=
1

(2π∆τ)3N/2
e−∆τV(R)e−(R−R′)2/(2∆τ). (12.70)

The potential could have been distributed symmetrically overR and R′, but we
shall see that the final result does not depend on this distribution. The first order
CBH commutator can be shown to vanish in this case, so that this short-time
approximation is accurate to order∆τ2. Substituting this result into (12.69), we
obtain

∫

dR0
〈

R0|e−τH |R0
〉

≈ 1

(2π∆τ)3NM/2

∫

dR0 dR1 dR2 . . .dRM−1

exp

{

−∆τ
M−1

∑
m=0

[

1
2

(

Rm+1−Rm

∆τ

)2

+V(Rm)

]}

. (12.71)

In this expression,RM = R0. The prefactor before the integral seems quite
dangerous in the sense that it explodes when we take the limit∆τ → 0. However,
this is balanced by the fact that, of the huge integration volume, only a tiny part
gives significant contributions to the integrand – in fact, the smaller we take∆τ, the
narrower the Gaussian kinetic energy integrands will be and the limit for large M
therefore still exists.
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Figure 12.3: Classical system described by the path integral of the two electrons in the
helium atom. Periodic boundary conditions are imposed along the quantum imaginary time
(the circle). The small full circles denote the helium nuclei, the heavy ones the electrons.
The circle is the time axis with periodic boundary conditions. The dashed lines represent
harmonic couplings between the electrons of adjacent copies (along the time axis). The
heavy drawn lines denote the electron–electron interaction, and the heavy dotted lines the
electron–nucleus interactions.

You might recognise the summand in the exponent as the Lagrangian (in discrete
imaginary time) of the classical many-particle system with coordinatesRi if we
take ∆τ → 0. The sum is then theaction, which assumes its minimum for the
classical trajectory. The integral is a sum overall possible sets of coordinates
R0, . . . ,RM. Such a set denotes apath in configuration space. We see that the trace
of the time evolution operator is written as a sum, or rather an integral, over all
possible paths. It is important to realise what the classical system represents. The
quantum many-particle system we are describing containsN particles, interacting
with each other and with an external potential through the potentialV(R). We
haveM copies of this many-particle system along the quantum imaginary time
direction, so that the classical system consists ofNM particles. The first term in the
sum in (12.71) derives from the kinetic part of the quantum Hamiltonian, butin the
classical system it denotes a harmonic coupling between corresponding particles
in adjacent copies: they are connected by springs. Figure 12.3 shows the classical
particle system and couplings for the two electrons in helium withM = 5.

The quantum partition function for a system ofN three-dimensional particles
is given as Trexp(−βH). The right hand side of Eq. (12.71) can be interpreted
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as theclassicalpartition function ofNM particles in three dimensions (without
momentum degrees of freedom – these can be thought of as being integrated over),
because it is an integral over all the configurations of the coordinatesRi with an
appropriate Boltzmann factor. The energyH of the classical system is identified
with the Lagrangian associated with the quantum HamiltonianH. An unusual
feature is the inverse temperature occurring in the denominator of the harmonic
interactions of the classical HamiltonianH (remember∆τ = β/M). We see that
the path integral maps the partition function of a 3N-dimensional system onto a
3N+ 1 dimensional system where the extra dimension can be interpreted either
as an imaginary-time or as an inverse-temperature axis – it corresponds to the
sub-indexi of theRi .

The path integral provides a very clear insight into the nature of quantum
mechanics. Up to now, we have putℏ ≡ 1. Had we keptℏ in the problem,
we would have seen that the prefactor in the exponent occurring before the sum
was∆τ/ℏ instead of∆τ. The classical limit corresponds toℏ = 0, which implies
that the path with minimal action dominates all the other paths. This is in fact
Hamilton’s principle: the classical path corresponds to the minimal action. If we
‘switch Planck’s constant on’, we see a contribution from the nonminimal paths
emerging. If we had not identifiedR0 with RM and if we had not integrated over this
coordinate, we would have a system with fixed end points, which brings the analogy
with classical mechanics even closer. Figure 12.4 gives a pictorial representation
of the idea of the path integral.

In this section and in the previous one, we have assumed that the errors in the
individual short time approximations do not add up to significant errors for large
times. The justification of this assumption is a theorem, which is usually denoted
as the Lie-Trotter-Suzuki formula, which says that for a HamiltonianH which can
be written as the sum ofK operators:

H =
K

∑
k=1

Hk (12.72)

it holds that

e−αH →
(

e−αH1/Me−αH2/M . . .e−αHK/M
)M

(12.73)

for largeM. The error is then given by11, 12

α2

M ∑
m>m′

|[Hm,Hm′ ]|e−α ∑m |Hm|, (12.74)

where| . . . | denotes the norm of an operator.
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τ

R

Figure 12.4: The path integral for a one-dimensional system. The vertical axes areR-axes
at different times. A path is a set of points given on these axes. The heavy drawn path is
the stationary path of the action, which is the solution to the classical equations of motion.
The thin lines represent neighbouring paths. For these paths, the action is not stationary,
but they are taken into account in the quantum mechanical path integral.

It is very easy to get confused with many physical quantities having different
meaning according to whether we address the time evolution operator, the quantum
partition function, or the classical partition function. Therefore we summarise the
different interpretations in table 12.2 The classical time in the last row of table 12.2
is the time which elapses in the classical system and which is analogous to the
time in a Monte Carlo simulation – this quantity has no counterpart in quantum
mechanics or in the statistical partition function.

The quantum partition function is now simulated simply by performing a
standard Monte Carlo simulation on the classical system. The PIMC algorithm
is

Put theNM particles at random positions;
REPEAT

FORm= 1 TOM DO
Select a time slice ˜mat random;
Select one of theN particles at time slice ˜mat random;
Generate a random displacement of that particle;
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Table 12.2: Meaning of several physical quantities in different interpretations of the path integral.

Quantum mechanics Quantum statistical mechanics Classical mechanics Statistical physics
d-dimensional d-dimensional d-dimensional subspace d-dimensional

configuration space configuration space of configuration space configuration space

imaginary timeτ inverse temperature 1-dimensional axis inverse temperature
β = 1/kBT in configuration space β = 1/kBT

time evolution operator Boltzmann operatore−βH – transfer matrix

kinetic energy kinetic energy harmonic interparticle potential inter-row coupling of
transfer matrix

Lagrangian Lagrangian Lagrangian Hamiltonian

path integral quantum partition function – partition function
of d-dimensional system ofd+1-dimensional system

classical limit zero temperature stationary path zero temperature
– – time –
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Calculater = exp[−∆τ (Hnew−Hold)];
Accept the displacement with probability min(1, r);

END FOR;
UNTIL Finished.

In this algorithm we have usedH to denote the Hamiltonian of the classical
system, which is equal to the Lagrangian occurring in the exponent of the path
integral – see Eq. (12.71).

Let us compare the path integral method with the diffusion Monte Carlo
approach. In the latter we start with a given distribution and let time elapse. At
the end of the simulation the distribution of walkers reflects the wave function
at imaginary timeτ – information about the history is lost: physical time
increases with simulation time. The longer our simulation runs, the stronger
will the distribution be projected onto the ground state. In the path integral
method, we change the positions of the particles along the imaginary-time
(inverse-temperature) axis. Letting the simulation run for a longer time does not
project the system more strongly onto the ground state – the extent to which
the ground state dominates in the distribution is determined by the temperature
β = M∆τ, i.e. for fixed∆τ, it is determined by the length of the chain. The PIMC
method is not necessarily carried out in imaginary time – there exist versions with
imaginary time, which are used to study the dynamics of quantum systems.13–15

The analysis so far is correct for distinguishable particles. In fact, we have simply
denoted a coordinate representation state by|R〉. For indistinguishable bosons, we
should read for this state:

|R〉= 1
N! ∑

P

|r1, r2, . . . , rN 〉 , (12.75)

where the sum is over all permutations of the positions. The boson character is
noticeable when we impose the periodic boundary conditions along theτ-axis,
where we should not merely identifyr k in the last coordinate|RM〉 with the
corresponding position in|R0〉, but also allow for permutations of the individual
particle positions in both coordinates to be connected.

This feature introduces a boson entropy contribution, which is particularly
noticeable at low temperatures. To see this, let us consider the particles as diffusing
from left (R0) to right (RM). On the right hand side we must connect the particles
to their counterparts on the left hand sides, taking all permutations into account. If
the Boltzmann factor forbids large steps when going from left to right, it is unlikely
that we can connect the particles on the right hand side to the permuted leftmost
positions without introducing a high energy penalty. This is the case whenτ = β is
small, or equivalently when the temperature is high. This can be seen by noticing
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that, keeping∆τ = β/N fixed, a decreaseβ must be accompanied by a decrease
in the number of segmentsN. Fewer segments means less opportunity for the
path to wander away from its initial position. On the other hand, we might keep
the number of segments constant, but decrease∆τ. As the spring constants are
inversely proportional to∆τ [see Eq. (12.71)], they do not allow, in that case, for
large differences in position on adjacent time slices; hence permutations arequite
unlikely. When the temperature is high (τ = β small), large diffusion steps are
allowed and there is a lot of entropy to be gained from connecting the particles to
their starting positions in a permuted fashion. This entropy effect is responsible for
the superfluid transition in4He.16–18 Path integral methods also exist for fermion
systems. A review can be found in Ref. 19.

What type of information can we obtain from the path integral? First of all,
we can calculate ground state properties by takingβ very large (temperature very
small). The system will then be in its quantum ground state. The particles will
be distributed according to the quantum ground state wave function. This can be
seen by considering the expectation value for particle 0 to be at positionR0. This
is given by

P(R0) =
1
Z

∫

dR1dR2 . . .dRM−1

〈

R0|e−∆τH |R1
〉〈

R1|e−∆τH |R2
〉

. . .
〈

RM−1|e−∆τH |R0
〉

. (12.76)

Note that the numerator differs from the path integral (which occurs in the
denominator) in the absence of the integration overR0. Removing all the unit
operators we obtain

P(R0) =

〈

R0|e−τH |R0
〉

∫

dR0〈R0|e−τH |R0〉
. (12.77)

Largeτ is equivalent to low temperature. But ifτ is large indeed, then the operator
exp(−τH) projects out the ground stateφG:

e−τH ≈ |φG 〉e−τEG 〈 φG|, largeτ . (12.78)

Therefore we have

P(R0) =
1
Z

e−τEG| 〈φG|R0〉 |2, largeτ . (12.79)

Because of the periodic boundary conditions in theτ direction we obtain the same
result for each time slicem. To reduce statistical errors, the ground state can be
therefore obtained from theaveragedistribution over the time slices via a histogram
method.
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The expectation value of a physical quantityA for a quantum system at a finite
temperature is found as

〈A〉β =
Tr
(

Ae−βH
)

Tr e−βH
. (12.80)

The denominator is the partition functionZ. We can use this function to determine
the expectation value of the energy

〈E〉β =
Tr
(

He−βH
)

Z
=− ∂

∂β
lnZ(β ). (12.81)

If we apply this to the path-integral form ofZ, we obtain for the energy per particle
(in one dimension):

〈

E
N

〉

β
=

M
2β

− 1
N
(〈K〉−〈V〉) . (12.82)

with

K = M
M−1

∑
m=0

(Rm−Rm+1)
2

2β 2 (12.83)

andV is the potential energy – see also problem 12.1. The first term in (12.82)
derives from the prefactor 1/

√

2π∆β of the kinetic Green function. The angular
brackets in the second and third term denote expectation values evaluated inthe
classical statistical many-particle system. It turns out that this expression for the
energy is subject to large statistical errors in a Monte Carlo simulation The reason
is that 1/β and〈K〉/(NM) are both large, but their difference is small. Hermanet
al.20 have proposed a different estimator for the energy, given by

〈

E
N

〉

β
=

〈

1
M

M−1

∑
m=0

[

V(Rm)+
1
2

Rm ·∇RmV(Rm)

]

〉

. (12.84)

This is called thevirial energy estimator– it will be considered in problem 12.1.
The virial estimator is not always superior to the direct expression, as was

observed by Singer and Smith for Lennard-Jones systems;21 this is presumably
due to the steepness of the Lennard-Jones potential causing large fluctuations in
the virial.

12.4.2 Applications

We check the PIMC method for the harmonic oscillator in one dimension. We have
only one particle per time slice. The particles all move in a ‘background potential’,
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which is the harmonic oscillator potential, and particles in neighbouring slices are
coupled by the kinetic, harmonic coupling. The partition function reads

Z =
∫

dx0 . . .dxM−1exp

{

− β
M

M−1

∑
m=0

[

(xm−xm+1)
2

2∆β 2 +
1
2

x2
m

]

}

. (12.85)

We have usedβ = 10 andM = 100. 30000 MCS were performed, of which the first
2000 were deleted to reach equilibrium. The maximum displacement was tuned to
yield an acceptance rate of about 0.5. The spacing between the energy levels of
the harmonic oscillator is 1; thereforeβ = 10 corresponds to large temperature.
We find for the energyE = 0.51±0.02, in agreement with the exact ground state
energy of 1/2. The ground state amplitude can also be determined, and it is found
to match the exact form|ψ(x)|2 = e−x2

very well.
The next application is the hydrogen atom. This turns out to be less successful,

just as in the case of the diffusion MC method. The reason is again that writing
the time evolution operator as the product of the exponentials of the kinetic and
potential energies is not justified when the electron approaches the nucleus, as the
Coulomb potential diverges there – CBH commutators diverge therefore too. The
use of guide functions is not possible in PIMC, so we have to think of something
else. The solution lies in the fact that theexacttime evolution operator over a time
slice∆t does not diverge atr = 0; we suffer from divergences because we have used
the so-calledprimitive approximation

T(r → r ′;∆τ) =
1

(2π∆τ)3/2
exp
[

−(r − r ′)/(2∆τ)
]

exp
{

−∆τ
[

V(r)+V(r ′)
]

/2
}

(12.86)

to the time evolution operator. The effect of averaging over all the continuous
paths from(r ,τ) to (r ′,τ +∆τ), as is to be done when calculating the exact time
evolution, is that the divergences atr , r ′ = 0 are rounded off. So if we could
find a better approximation to this exact time evolution than the primitive one, we
would not suffer from the divergences any longer. Several such approximations
have been developed.22, 23 They are based either on exact Coulomb potential
solutions (hydrogen atom) or on the cumulant expansion. We consider the latter
approximation in some detail in problems 12.2 and 12.3; here we shall simply
quote the result:

Vcumulant(r , r ′;∆τ) =
∫ ∆τ

0
dτ ′erf

[

r(τ ′)/
√

2στ ′
]

r(τ ′)
, (12.87a)

where

r(τ ′) = r +
τ ′

∆τ
(r ′− r) andσ(τ ′) =

(∆τ − τ ′)τ ′

∆τ
. (12.87b)
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Figure 12.5: The cumulant potential for∆τ = 0.2 (diamonds) and the Coulomb potential.
It is clearly seen that the cumulant potential is rounded of at r = 0.

The cumulant approximation forV can be calculated and saved in a tabular form, so
that we can read it into an array at the beginning of the program, and then obtain the
potential for the values needed from this array by interpolation. In fact, for ∆τ fixed,
Vcumulant depends on the norms of the vectorsr and r ′ and on the angle between
them. Therefore the table is three-dimensional. We discretiser in, say, 50 steps
∆r between 0 and some upper limitrmax, (which we take equal to 4) and similarly
for r ′. For values larger thanrmax we simply use the primitive approximation,
which is sufficiently accurate in that case. For the angleθ in betweenr and r ′

we store cosθ , discretised in 20 steps between−1 and 1 in our Table. For actual
valuesr, r ′ andu= cosθ we interpolate linearly from the table – see problem 12.4.
Figure 12.5 shows the cumulant potentialV(r = r ′,θ = 0;∆τ = 0.2), together with
the Coulomb potential; the rounding effect of the cumulant approximation is clear.
In a path integral simulation for the hydrogen atom we find a good ground state
distribution, shown in Figure 12.6. For the energy, using the virial estimator with
the original Coulomb potential (which is of course not entirely correct), wefind
EG = −0.494±0.014, using∆τ = 0.2, 100 time slices and 60000 MC steps per
particle, of which the first 20000 were removed for equilibration.

Applying the method to helium is done in the same way. Using 150000 steps
with a chain length of 50 andτ = 0.2, the ground state energy is found as 2.93±
0.06 atomic units. Comparing the error with the DMC method, the path integral
method does not seem to be very efficient, but this is due to the straightforward
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Figure 12.6: PIMC ground state amplitude|ψ(r)|2 (diamonds) and the exact result. 60000
MCS with a chain length of 100 andτ = 0.2 were used.

implementation. It is possible to improve the PIMC method considerably as will
be described in the next section.

The classical example of a system with interesting behaviour at finite temperature
is dense helium-4. In this case the electrons are not taken into account as
independent particles, rather a collection of atoms is considered, interacting
through Lennard-Jones potentials. We shall not go into details of implementation
and phase diagram, but refer to the work by Ceperley and Pollock.3, 4

12.4.3 Increasing the efficiency

The local structure of the action enables us to use the heat bath algorithm instead
of the classical sampling rule, in which particles are displaced at random uniformly
within a cube (or a sphere). If we update the coordinateRm, keepingRm−1 and
Rm+1 fixed, then in the heat-bath algorithm, the new valueR′

m must be generated
with distribution

ρ(R′
m) = exp

[

−∆τ
(R′

m−Rm)
2

2∆τ2 −∆τV(R′
m)

]

(12.88)

whereRm = (Rm+1+Rm−1)/2. We may sample the new position directly from this
distribution by first generating a new position using a Gaussian random generator
with width 1/(2∆τ) and centred aroundRm, and then accepting or rejecting the
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new position with a probability proportional to exp[−∆τV(R′
m)]. This procedure

guarantees 100% acceptance for zero potential. If there are hard-core interactions
between the particles, the Gaussian distribution might be replaced by a more
complicated form to take this into account – for details see Ref. 4.

A major drawback of the algorithm presented so far is that only one atom is
displaced at a time. To obtain a decent acceptance rate the maximal distance over
which the atom can be displaced is restricted by the harmonic interaction between
successive ‘beads’ on the imaginary time-chain to∼

√
∆τ. The presence of the

potentialV can force us to decrease this step size even further. It will be clear that
our local update algorithm will cause the correlation time to be long, as this time
is determined by the long wavelength modes of the chain. As it is estimated that
equilibration of the slowest modes takes roughlyO(M2) Monte Carlo sweeps (see
the next chapter), the relaxation time will scale asM3 single-update steps. This
unfavourable time scaling behaviour is well-known in computational field theory,
and a large part of the next chapter will be dedicated to methods for enhancing the
efficiency of Monte Carlo simulations on lattices. An important example of such
methods isnormal mode sampling24, 25 in which, instead of single particle moves,
one changes the configuration via its Fourier modes. If one changes forexample
the k = 0 mode, all particles are shifted over the same distance. The transition
probability is calculated either through the Fourier-transformed kinetic (harmonic
interaction) term, followed by an acceptance/rejection based on the changein
potential, or by using the Fourier transform of the full action. We shall nottreat
these methods in detail here – in the next chapter, we shall discuss similar methods
for field theory.

A method introduced by Ceperley and Pollock3, 4 divides the time slices up in a
hierarchical fashion and alters the values of groups of points in variousstages. At
each stage the step can be discontinued or continued according to some acceptance
criterion. It turns out that with this method it is possible to reduce the relaxation
time from M3 to M1.4.4 The method seems close in spirit to the multigrid Monte
Carlo method of Goodman and Sokal – we shall describe the latter in the next
chapter.

It will be clear that for a full boson simulation, moving particles is not sufficient
– we must also include permutation moves, in which we swap two springs between
particles at subsequent beads, for example. However, the configurations are usually
equilibrated for a particular permutation, and changing this permutation can beso
drastic a move that permutations are never accepted. In that case it is possible to
combine a permutation with particle displacements which adjusts the positions to
the new permutation.4
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12.5 Quantum Monte Carlo on a lattice

There are several interesting quantum systems which are, or can be formulated on
a lattice. First of all, we may consider quantum spin systems as generalisationsof
the classical spin systems mentioned in Chapter 7. An example is the Heisenberg
model, with Hamiltonian

HHeisenberg=−J∑
〈i j 〉

si ·sj (12.89)

where the sum is over nearest neighbour sites〈i j 〉 of a lattice (in any dimensions),
and the spins satisfy the standard angular momentum commutation relations on the
same site (ℏ≡ 1):

[sx,sy] =
isz

2
. (12.90)

Another example is the second quantised form of the Schrödinger equation.
This uses the ‘occupation number representation’ in which we have creation and
annihilation operators for particles in a particular state. If the Schrödinger equation
is discretised on a grid, the basis states are identified with grid points, and the
creation and annihilation operators create and annihilate particles on the these grid
points. These operators are calledc†

i and ci respectively, and they satisfy the
commutation relations

[ci ,c j ] = [c†
i ,c

†
j ] = 0; [ci ,c

†
j ] = δi j . (12.91)

In terms of these operators, the Schrödinger equation for a one-dimensional, non-
interacting system reads26

∑
i

−t
(

c†
i ci+1+c†

i+1ci

)

+∑
i

Vini (12.92)

whereni is the number operatorc†
i ci , and where appropriate boundary conditions

are to be chosen.
A major advantage of this formulation above the original version of the Schröd-

inger equation is that the boson character is automatically taken into account: there
is no need to permute particles in the Monte Carlo algorithm. A disadvantage is
that the lattice will introduce discretisation errors.

Finally, this model may be formulated for interacting fermions. A famous model
of this type is the so-calledHubbard model, which models the electrons which
are tightly bound to the atoms in a crystalline material. The Coulomb repulsion is
restricted to an on-site effect; electrons on different sites do not feel it.The creation
and annihilation operators are now calledc†

i,σ ,ci,σ , whereσ = ± labels the spin.
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They anti-commute, except for[c†
i,σ ,c j,σ ′ ]+ = δi j δσσ ′ . The standard form of the

Hubbard model in one dimension reads

H = ∑
i,σ

−t
[

c†
i,σ ci+1,σ +c†

i+1,σ ci,σ

]

+U ∑
i

ni,σ ni,−σ (12.93)

whereni,σ is the number operator which counts the particles with spinσ at sitei:
ni = c†

i,σ ci,σ . The first term describes hopping from atom to atom, and the second
one represents the Coulomb interaction between fermions at the same site.

We shall outline the quantum path-integral Monte Carlo analysis for
one-dimensional lattice quantum systems, taking the Heisenberg method as the
principal example – extensions to other systems will be considered only very
briefly. For a review, see Ref. 5; see also 27.

The quantum Heisenberg model is formulated on a chain consisting ofN sites,
which we shall number by the indexi. We have discussed this model already in
Section 11.5. The Hilbert space has basis states|S〉 = |s1,s2, . . . ,sN〉, where thesi

assume values±1 – they are the eigenstates of thez-component of the spin operator.
The Heisenberg Hamiltonian can be written as the sum of operators containing
interactions betweentwo neighbouringsites. Let us callHi the operator−Jsi ·si+1,
coupling spins at sitesi andi +1. Suppose we haveN sites and thatN is even. We
now partition the Hamiltonian as follows:

H = Hodd+Heven= (H1+H3+H5+ · · ·+HN−1)+

(H2+H4+H6+ · · ·+HN). (12.94)

Hi andHi+2 commute as theHi couple only nearest neighbour sites. This makes the
two separate HamiltoniansHodd andHeven trivial to deal with in the path integral.
HoweverHodd andHevendo not commute. It will therefore be necessary to use the
short-time approximation.

The time evolution operator is split up as follows:

e−τH ≈ e−∆τHodde−∆τHevene−∆τHodde−∆τHeven. . .e−∆τHodde−∆τHeven (12.95)

with a total number of 2M exponents in the right hand side;∆τ = τ/M. In
calculating the partition function, we insert a unit operator of the form∑S|S〉〈S|
between the exponentials, where∑S denotes a sum over all the spinssi in S:

Z = ∑
Si ,S̄i

〈

S0
∣

∣e−∆τHodd
∣

∣ S̄0
〉〈

S̄0
∣

∣e−∆τHeven
∣

∣S1
〉〈

S1
∣

∣e−∆τHodd
∣

∣ S̄1
〉

〈

S̄1
∣

∣e−∆τHeven
∣

∣S2
〉

· · ·
〈

SN/2−1

∣

∣e−∆τHodd
∣

∣ S̄N/2−1
〉

〈

S̄N/2−1

∣

∣e−∆τHeven
∣

∣S0
〉

. (12.96)
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Figure 12.7: The checkerboard decomposition of the space–time lattice. Two world lines
are shown.

The operators exp(∆τHeven) and exp(∆τHodd) can be expanded as products of terms
of the form exp(∆τHi). Each such term couples the spins around a plaquette of the
space–time lattice and the resulting picture is that of Figure 12.7, which explains
the name ‘checkerboard decomposition’ for this partitioning of the Hamiltonian.
Other decompositions are possible, such as the real space decomposition,but we
shall not go into this here, see Ref. 5.

The simulation of the system seems straightforward: we have a space–time lattice
with interactions around the shaded plaquettes in Figure 12.7. At each site ofthe
lattice we have a spinsim, wherei denotes the spatial index andmdenotes the index
along the imaginary-time or inverse-temperature axis. The simulation consists of
attempting spin flips, evaluating the Boltzmann weight before and after the change,
and then deciding to perform the change or not with a probability determined by the
fractions of the Boltzmann weights (before and after). There is howevera snake
in the grass. The HamiltoniansHm commute with the total spin operator,∑i s

z
i ;

therefore the latter is conserved, i.e.

sim+si+1,m = si,m+1+si+1,m+1 (12.97)

for each plaquette (remember thesi occurring in this equations are the eigenvalues
of the correspondingsz

i operators). Therefore a single spin flip will never be
accepted as it does not respect this requirement. This was already notedin
Section 11.5: letting a chain evolve under the Hamiltonian time evolution leaves the
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system in the ‘sector’ where it started off. Simple changes in the spin configuration
which conserve the total spin from one row to another are spin flips of all the spins
at the corners of a nonshaded plaquette.

In the boson and fermion models, where we have particle numbersnim instead of
spins, the requirement (12.97) is to be replaced by

nim+ni+1,m = ni,m+1+ni+1,m+1. (12.98)

In this case the simplest change in the spin configuration consists of an increase
(decrease) by one of the numbers at the two left corners of a nonshaded plaquette
and a decrease (increase) by one of the numbers at the right hand corners
[obviously, the particle numbers must obeynim ≥ 0 (bosons) ornim = 0,1
(fermions)]. Such a step is equivalent to having one particle moving one lattice
position to the left (right). The overall particle number along the time direction
is conserved in this procedure. The particles can be represented byworld lines,
as depicted in Figure 12.7. The changes presented here preserve particle numbers
from row to row, so for a simulation of the full system, one should consider also
removals and additions of entire world lines as possible Monte Carlo moves.

Returning to the Heisenberg model, we note that the operator exp(−∆τHi)
couples only spins at the bottom of a shaded plaquette to those at the top. This
means that we can represent this operator as a 4×4 matrix, where the four possible
states|++〉, |+−〉, | −+〉 and | − −〉 label the rows and columns. For the
Heisenberg model one finds after some calculation

exp

[

−∆τ
J
4

� i · � i+1

]

=

e−∆J/4









e∆τJ/2 0 0 0
0 cosh(∆τJ/2) sinh(∆τJ/2) 0
0 sinh(∆τJ/2) cosh(∆τJ/2) 0
0 0 0 e∆τJ/2









(12.99)

[� is the vector of Pauli matrices(σx,σy,σz) – we haves= ℏ� /2; ℏ ≡ 1]. This
matrix can be diagonalised (only a diagonalisation of the inner 2× 2 block is
necessary) and the model can be solved trivially. Some matrix elements become
negative whenJ< 0 (Heisenberg anti-ferromagnet). This minus-sign problem turns
out not to be fundamental, as it can be transformed away by a redefinition of the
spins on alternating sites – see refs. 5 and 28.

In the case where instead of spin-1/2 degrees of freedom, we have (boson)
numbers on the sites, the matrixH1 becomes infinite dimensional. In that case
we must expand exp(−∆τHi) in a Taylor series expansion in∆τ. We shall not go
into details but refer to the literature.5
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If we have fermions, there is again a minus-sign problem. This turns out to be
removable for a one-dimensional chain, but not for two and three dimensions. In
these cases one uses fixed-node and transient estimator methods described above.29

12.6 The Monte Carlo transfer matrix method

In Chapter 11 we have seen that it is possible to calculate the free energy of a
discrete lattice spin model on a strip by solving the largest eigenvalue of the transfer
matrix. The size of the transfer matrix increases rapidly with the strip width and
the calculation soon becomes unfeasible, in particular for models in which the spins
can assume more than two different values. The QMC techniques which have been
presented in the previous sections can be used to tackle the problem of finding the
largest eigenvalues of the very large matrices arising in such models. In thepresent
section, we discuss such a method. It goes by the name ‘Monte Carlo transfer
matrix’ (MCTM) method and it was pioneered by Nightingale and Blöte.30

Let us briefly recall the transfer matrix theory. The elementsT(S′,S) = 〈S′|T|S〉
of the transfer matrixT are the Boltzmann weights for adding new spins to a semi-
infinite system. For example, the transfer matrix might contain the Boltzmann
weights for adding an entire row of spins to a semi-infinite lattice model, or a
single spin, where in the latter case we take helical boundary conditions so that the
transfer matrix is the same for each spin addition (see figure 12.8). The free energy
is given in terms of the largest eigenvalueλ0 of the transfer matrix:

F =−kBT ln(λ0). (12.100)

From discussions in Chapter 11 and Section 12.4, it is clear that the transfer matrix
of a lattice spin model is the analogue of the time evolution operator in quantum
mechanics.

We now apply a technique analogous to diffusion Monte Carlo to sample the
eigenvector corresponding to the largest eigenvalue – in the following we use
the terms ‘ground state’ for this eigenvector, because the transfer matrix can be
written in the formT = exp(−τH), so that the ground state ofH gives the largest
eigenvalue of the transfer matrix. We write the transfer matrix as a product of a
normalised transition probabilityP and a weight factorD. In Dirac notation:

〈

S′|T|S
〉

= D(S′)
〈

S′|P|S
〉

. (12.101)

The ground state will be represented by a collection of random walkers{Sk} which
diffuse in configuration space according to the transition probabilityP. Each
diffusion step is followed by a branching step in which the walkers are eliminated
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 s’0

 s’1(= s 0)

 s’2(=   s1)

 s’L-1(= s L-2)

 sL-1

Figure 12.8: Helical boundary conditions for the spin modelwith nearest neighbour
interactions on a strip.

or multiplied, i.e. split into a collection of identical walkers, depending on the value
of the weight factorD(S′k).

Let us describe the procedure for ap-state clock modelwith stochastic variables
(spins) which assume values

θ =
2πn

p
,n= 0, . . . , p−1 (12.102)

and a nearest neighbour coupling

− H

kBT
= ∑

〈i j 〉
Jcos(θi −θ j). (12.103)

For p = 2 this is equivalent to the Ising model (with zero magnetic field), with
J being exactly the same coupling constant as in the standard formulation of this
model (Chapter 7). For largep the model is equivalent to theXY model. TheXY
model will be discussed in Chapter 15 – at this moment it is sufficient to know that
this model is critical for all temperatures between 0 andTKT , which corresponds
to βJ ≈ 1.1 (the subscript KT denotes the Kosterlitz-Thouless phase transition, see
Chapter 15). The central chargec (see Section 11.3) is equal to 1 on this critical
line.



444 Quantum Monte Carlo methods

The walkers are ‘columns’ of lattice spins,(s0, . . . ,sL−1), as represented in
Figure 12.8. In the diffusion step, a new spin is added to the system, and its value
is thes0-component of the new configuration of the walker. The spin components 1
to L−1 of the new configuration are filled with the components 0 throughL−2 of
the old walker – the walker is shifted one position over the cylinder. To sample the
news′0-value, we use the ‘shooting method’ in which the interval[0,1] is divided
up into p segments corresponding to the conditional probabilityP(s′0|S) which
is proportional to the Boltzmann factor for adding a spins′0 = 0, . . . , p− 1 to the
existing columnS. In our clock model example, we have

P(s′0|S) = eJcos(s′0−s0)+Jcos(s′0−sL−1)/D(S), (12.104)

with normalisation factor

D(S) = ∑
s′0

eJcos(s′0−s0)+Jcos(s′0−sL−1). (12.105)

A random number between 0 and 1 is then generated and the new spin value
corresponds to the index of the segment in which the random number falls.

The next step is then the assignment of the weightD(S′) to the walker withD
given in (12.105). Branching is then carried out exactly as in the DMC method. In
fact, the weights are also multiplied by a factor exp(Etrial), whereEtrial is the same
for all walkers but varies in time – it is updated as in the DMC method according
to

Etrial = E0−α ln(N/N0), (12.106)

whereE0 is a guess of the trial energy (which should be equal to− lnλ0, λ0 is the
largest eigenvalue),N is the actual number of walkers andN0 is the target number
of walkers. This term aims at stabilising the population size to the target number
N0.

The simplest information we obtain is the largest eigenvalue, which is given as
exp(ETrial), where the average value ofEtrial during the simulation is to be used
(with the usual omission of equilibration steps). This can be used to determine
central charges. In table 12.3 we compare the values of this quantity for theIsing
model with those obtained by a Lanczos diagonalisation of the transfer matrix.
The agreement is seen to be excellent. For theXY model, the eigenvalues cannot
be found using direct diagonalisation and we can check the MCTM method only
by comparing the central charge obtained with the known value: 1 in the low
temperature phase and 0 at high temperatures. In Figure 12.9 we show the results
for βJ = 1.25. The points in a lnλ0 vs. 1/L2 graph form lie indeed on a straight
curve with a slope ofπ/6 (c= 1).
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Table 12.3: The largest eigenvalue of the transfer matrix ofthe Ising model on a strip
with helical boundary conditions (Figure 12.8) versus strip width L. The target number
of walkers is equal to 5000, and they performed 10000 diffusion steps. The third column
gives the eigenvalues obtained by diagonalising the full transfer matrix using the Lanczos
method. These values are determined with high accuracy and are rounded to 4 significant
digits.

L lnλ0 (MCTM) ln λ0 (Lanczos)
6 0.9368(2) 0.9369
7 0.9348(2) 0.9350
8 0.9337(2) 0.9338
9 0.9328(2) 0.9329
10 0.9321(2) 0.9323
11 0.9316(2) 0.9318

4.418

4.42

4.422

4.424

4.426

4.428

4.43

4.432

0.01 0.014 0.018 0.022 0.026

ln
λ 0

1/L 2

Figure 12.9: The logarithm of the largest eigenvalue of the transfer matrix versus the inverse
of the square of the strip widthL. The straight line has a slopeπ/6 and is adjusted in height
to fit the data.
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Exercises

12.1 In this problem we consider the virial expression for the energy.20

In a path-integral QMC simulation for a particle in one dimension in a
potentialV(x) we want to find the energyE as a function of temperature
T = 1/(kBβ ). We do this by using the thermodynamic relation

E =−∂ lnZ
∂β

where the quantum statistical partition functionZ is given by

Z = Tre−βH .

We takeℏ≡ 1.

(a) Show by using the Lie-Trotter-Suzuki formula that

E =
N
2β

+

∫

dx0dx1 . . .dxM−1[−T +U ]exp(−βScl)
∫

dx0dx1 . . .dxM−1exp(−βScl)

with

T =
M

2β 2

M−1

∑
m=0

(xm−xm+1)
2;

x0 ≡ xM;

U =
1
M

M−1

∑
m=0

V(xm)

and
Scl = T +V.

(b) Show that

∫

dx0dx1 . . .dxN−1 ∑N−1
i=0 xi

∂Scl
∂xi

exp(−βScl)
∫

dx0dx1 . . .dxN−1exp(−βScl)
=

N
β
.

Hint: use partial integration.

(c) Show that
M−1

∑
m=0

xm
∂T
∂xm

= 2T.
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(d) Show that the energy can also be determined by

E =

〈

1
N

N−1

∑
m=0

[

V(xm)+
1
2

xm
∂V
∂xm

]

〉

.

(e) Show that the generalisation to a three-dimensional particle is

E =

〈

1
N

M−1

∑
m=0

[

V(rm)+
1
2

rm · ∂V
∂ rm

]

〉

.

12.2 A particle moves in three dimensions. It experiences no potential:V(r) = 0.
At imaginary timeτ = 0 the particle is localised atr1.

(a) What is the wave functionψ0(r ,τ) of the particle forτ ′ > 0?

(b) We assume that the particle moves fromr1 at time 0 tor2 at timeτ. When
we want to evaluate the matrix element

〈r1,0|r2,τ〉 ,

in the path integral formalism, we should include all paths satisfying these
boundary conditions. Using completeness, we can write, with 0< τ ′ < τ:

〈r1,0|r2,τ〉=
∫

d3r ′
〈

r1,0|r ′,τ ′〉〈r ′,τ ′|r2,τ
〉

.

Show that the integrand in this equation can be written as

〈

r1,0|r ′,τ ′〉〈r ′,τ ′|r2,τ
〉

= 〈r10|r2,τ〉
1

(2πστ ′)
3/2

e−[r ′−r(τ ′)]2/(2στ ′ ),

with

στ ′ =
τ ′(τ − τ ′)

τ
andr(τ ′) = r1+

τ ′

τ
(r2− r1) .

12.3 In this problem we consider the cumulant expansion analysis for the Coulomb
potential4, 22 using the result of the previous problem.

The cumulant expansion is a well-known expansion in statistical physics31 –
it replaces the Gaussian average of an exponent by the exponent of asum of
averages:

〈

eτV〉= eτ〈V〉+ 1
2(τ

2〈V2〉−〈V〉2)+···.
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First we note that the matrix between two positionsr1 andr2, separated by an
imaginary timeτ can be written in the following way:

〈r1,0|exp

(

−
∫ τ

0
V(r ′τ)dτ ′

)

|r2,τ〉 .

where the time evolution leading from 0 toτ is that of a free particle and the
expression is to be evaluated in a time-ordered fashion.

If we evaluate this in the cumulant expansion approximation retaining only
the first term, it is clear that we must calculate

∫ τ

0
dτ ′

∫

d3r ′
〈

r1,0|r ′,τ ′〉V(r ′)
〈

r ′,τ ′|r2,τ
〉

.

This is done in this problem.

(a) Show that the Fourier transform of the Coulomb potential isV(k)= 2π/k2.

(b) Show that the Fourier transform of the expression derived in problem 12.2
is given by

e−ik·r(τ ′)−στ ′k
2/2,

with στ ′ andr(τ ′) as given in the previous problem.

(c) Show, by transforming back to ther -representation, that the cumulant
potential is given by

Vcumulant(r1, r2;τ) =
∫ τ

0

erf
[

r(τ ′)/
√

2στ ′
]

r(τ ′)
dτ ′.

12.4 In the path-integral simulation for the hydrogen atom we use a table in which
the cumulant expression for the potential is stored and we want to linearly
interpolate this Table.

(a) Show that for a two-dimensional table containing values of a function
f (x,y) for integerx andy, the value f (x,y) for arbitraryx andy within
the boundaries set by the table size is given as

f (x,y) = (2−x−y+[x]+ [y]) f ([x], [y])+

(1+x− [x]−y+[y]) f ([x]+1, [y])+

(1+y− [y]−x+[x]) f ([x], [y]+1)+

(x− [x]+y− [y]) f ([x]+1, [y]+1).

Here[x] denotes the largest integer, smaller thanx.
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(b) Find analogous expressions for a table with a noninteger (but equidistant)
spacing between the table entries and also for a three-dimensional Table.

12.5 [C]

In this problem we consider applying variational Monte Carlo to the hydrogen
molecule. There are two complications in comparison with the helium atom.
One is the calculation of the local energy which is quite cumbersome, though
straightforward. The second one is the cusp condition.

To specify the trial wave function we take the nuclei at positions±s/2. A
one-particle orbital has the form (in atomic units):

φ(r) = e−|r−sx̂/2|/a+e−|r+sx̂/2|/a

wherea is some parameter. The two-electron wave function is given as

ψ(r1, r2) = φ(r1)φ(r2) f (r12)

with f the Jastrow factor

f (r) = exp

(

r
α(1+β r12)

)

.

(a) Show that the Coulomb-cusp condition near the nuclei leads to the relation

1
1+exp(−s/a)

= a.

For a given distances, this equation should be solved numerically to give
you the valuea.

(b) Show that the electron-electron cusp condition leads to the requirement
a= 2. This leaves a single parameterβ in the wave function.

(c) Now you can implement the hydrogen molecule in VMC. Calculate the
energy as a function of the parametersβ andsand find the minimum.

(d) You may also evaluate the ground state by applying the method of Harju
et al.6 which was described in Section 12.2 in order to update the values
of β ands simultaneously.

(e) What would you need in order to calculate the molecular formation energy
from this. Note that this is the difference between the energy of the
hydrogen molecule and that of two isolated hydrogen atoms. Consider
in particular the contribution arising from the nuclear motion.
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