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The Monte Carlo method

10.1 Introduction

In Chapter 8 we saw how a classical many-particle system can be simulated by
the MD method, in which the equations of motion are solved for all the particles
involved. This enables us to calculate statistical averages of static and dynamic
physical quantities. There exists another method, called the Monte Carlo (MC)
method, for simulating classical many-particle systems by introducing artificial
dynamics based on ‘random’ numbers.† The artificial dynamics used in the MC
method prevent us from using it for determining dynamical physical properties in
most cases, but for static properties it is very popular.

In fact, every numerical technique in which random numbers play an essential
role can be called a ‘Monte Carlo’ method after the famous Mediterranean casino
town, and we shall discuss the method not only as a tool for studying classical
many-particle systems, but also as a way of dealing with the more general problem
of calculating high-dimensional integrals. In fact, three main types of Monte Carlo
simulations can be distinguished:

• Direct Monte Carlo, in which random numbers are used to model the effect
of complicated processes, the details of which are not crucial. An example is
the modelling of traffic where the behaviour of cars is determined in part by
random numbers.

• Monte Carlo integration, which is a method for calculating integrals using
random numbers. This method is efficient when the integration is over
high-dimensional volumes (see below).

• Metropolis Monte Carlo, in which a sequence of distributions of a system is
generated in a so-called Markov chain. This method allows us to study the

†As explained in Appendix B, computer-generated random numbers are not truly random, hence
the quotes.
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static properties of classical and quantum many-particle systems – the latter
will be discussed in Chapter 12.

Direct Monte Carlo is a powerful method which can be applied to a wide variety
of problems inside and outside physics. There is, however, not much to be said
about this method as its implementation is as direct as the name suggests. The
difficulty resides usually in the modelling aspect: how can certain phenomena be
represented using random numbers – the implementation of the method is then
usually rather straightforward. In the next section we shall briefly discuss MC
integration. The Metropolis sampling method will be discussed in the remainder
of this chapter. The MC techniques which will be discussed in this chapter are
essential for much of the material covered in chapters 12 and 15 on quantum Monte
Carlo methods and lattice field theory simulations.

A general reference on MC techniques is the book by Hammersley and
Handscomb.1 More detailed material concerning Metropolis Monte Carlo methods
can be found in the book by Allen and Tildesley,2 two review volumes by Binder3, 4

and the books by Kalos and Whitlock,5 Binder and Heermann6 and Barkema and
Newman.7†

10.2 Monte Carlo integration

Suppose we want to calculate the integral of a smooth function f on the interval
[a,b] on the real axis:

I =
�b

a
d x f (x). (10.1)

Standard numerical methods for this problem are discussed in Section A.6, and
they usually boil down to calculating the function on a set of equally spaced values
xi (except for Gaussian integration, where the points are not equidistant) and then
evaluating the sum

I = (b −a)

N

N
�

i=1

wi f (xi ), (10.2)

where the weights wi do not depend on f – they determine the accuracy of the
method. Usually such methods are based on polynomial approximations of the
integrand and their accuracy σ is expressed in terms of a power of the separation
h of the integration points: σ∼ hk ∼ N−k , where k is a positive integer. In Monte
Carlo integration we also use Eq. (10.2), with the weights wi all equal to 1 but the
xi now chosen randomly!

†Lecture notes by Frenkel8 have been helpful in writing part of this chapter.
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It will be clear that if the random coordinates xi are homogeneously distributed
on [a,b], and if N is sufficiently large, the sum (10.2) yields a result close to the
exact integral. We calculate the variance in the result:

σ2 =
��

b −a

N

N
�

i=1

fi

�2�

−
��

b −a

N

N
�

i=1

fi

��2

. (10.3)

The angular brackets denote an average over all possible realisations of the
sequence of random coordinates xi . Carrying out this average for the last term
on the right hand side gives the square of the average f of the function f on [a,b].
Splitting the sums in the first term on the right hand side into a sum with i = j and
one with i �= j leads after some manipulation to

σ2 = (b −a)2

N

�

f 2 − f
2
�

(10.4)

where the bar denotes an average of the function on [a,b]. We see that the error is
proportional to the variance of f on [a,b]. The fact that σ∼ 1/

�
N is to be expected

from the central limit theorem. This scaling is clearly unfavourable compared
with standard quadrature methods using equidistant values for the xi , which yields
an error N−k with k ≥ 1. However, MC integration is more efficient in higher
dimensions. To see this, let us consider standard numerical integration, with error
O (hk ), for a d-dimensional integral. For simplicity we assume that the integration
volume is a hypercube with side L. This contains N = (L/h)d points and therefore
the error in the result scales as N−k/d . The error of the Monte Carlo integration
however, is independent of d – it is still O (N−1/2) since the central limit theorem
does not depend on the dimension. Comparing this error with that of the standard
method, we see that MC integration is more efficient than an order-k algorithm
when d > 2k.

This is a rather counter-intuitive result: we would expect that using a regular grid
for calculating the integral would always be superior to the random distribution
of points of the Monte Carlo method. The reason for the superiority of MC
integration in higher dimensions is that in a sense the random distribution is more
homogeneous than the regular grid. Consider for example a rectangular volume
within the integration volume. A homogeneous distribution of the integration
points would imply that the number of points within this rectangular volume should
be approximately proportional to that volume. If we choose the rectangular volume
to have sides parallel to the axes of the point grid used in the standard integration
method, it is clear that on increasing the volume size, the number of points it
contains increases stepwise whenever a facet of the volume moves through an array
of integration points. In this respect random distributions are more homogeneous,
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since for these distributions such steps in the number of points are extremely
unlikely to occur. This heuristic argument can be formalised – see the review by
James9 and references therein.

Several methods have been devised to reduce the error of the Monte Carlo
integration method; for a discussion see Ref. 9. We give a brief overview here. In
order to distribute the points more homogeneously over the integration hypercube,
it is possible to subdivide the latter into smaller, equally sized subvolumes and
to choose an equal number of random points in each subvolume. This is called
‘stratified Monte Carlo’.

In many practical cases, the contributions to the integral from different regions
in the integration volume vary strongly. The MC method samples the function
homogeneously, so if the significant contributions to the integral come primarily
from a small region within the integration volume, there will be only few MC points
for sampling the function there, leading to large statistical errors. This effect shows
up in (10.4) as a large variance of f over the volume. In order to reduce this
contribution to the error, points are concentrated in the regions where f happens to
be large (in absolute value). More precisely, let ρ(x) be a function on [a,b] which
has more or less the shape of f in the sense that f /ρ is approximately constantover
the interval. We furthermore require ρ to be normalised:

�b

a
d x ρ(x) = 1. (10.5)

We write the integral over f as follows:

�b

a
d x f (x) =

�b

a
d x ρ(x)

�

f (x)

ρ(x)

�

. (10.6)

The function in square brackets is reasonably flat (as ρ is chosen to have more or
less the shape of f ) and the weight ρ(x) in front of this function can be included
in the integral by choosing the random points xi with distribution ρ(x). The Monte
Carlo result for the integral is then still given by (10.2). This reduces the error in
the result considerably as we can see by evaluating the variance (10.4) for this case:

σ2 = 1

N

�

�b

a

�

f (x)

ρ(x)

�2

ρ(x)d x −
��b

a

�

f (x)

ρ(x)

�

ρ(x)d x

�2
�

. (10.7)

If we are able to choose ρ indeed such that f /ρ is approximately constant, then as a
result of (10.5) the expression in the braces will indeed be much smaller than in the
‘crude sampling’ case. This method is called importance sampling Monte Carlo.
Adaptive Monte Carlo methods aim also at concentrating the sampling points in
those regions where f contributes significantly to the integral, but these methods
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locate these regions by probing the function at random points and require no a

priori knowledge on the function f as in the case of importance sampling.
Note that MC integration is not susceptible to correlations in the random

generator. Correlations influence the order in which points the xi are generated
but this does not affect the sum. In fact, it is possible to generate artificial
number sequences without attempting to achieve (pseudo-) randomness but which
fill a high-dimensional volume very homogeneously so that they are suitable for
integration. The resulting method is called ‘quasi-Monte Carlo’.9

10.3 Importance sampling through Markov chains

We now explain the importance sampling method for classical many-particle
systems in the canonical or (NV T ) ensemble – extensions to other ensembles
will be discussed later in this chapter. When calculating averages in the (NV T )

ensemble, the configurations should be weighted according to the Boltzmann factor

ρ(X ) ∝ exp
�

−βE (X )
�

, β= 1/(kB T ). (10.8)

This suggests that we apply MC integration with importance sampling, as the phase
space over which we must integrate is high-dimensional. The method which first
comes to mind for generating phase space points (configurations) with a Boltzmann
distribution is the Von Neumann method discussed in Section B.3. In our case this
would mean generating random configurations and accepting them with probability
exp[−βE (X )] where the energy scale is assumed to be such that the energy is
always positive. However, as the number of configurations with a particular
energy increases exponentially with energy, most of the randomly constructed
states have very high energy – hence for finite temperature they will be accepted
with a vanishingly small probability and we spend most of our time generating
configurations which are then rejected, which is obviously very inefficient.

Another method would be to construct statistically independent configurations
with a bias towards lower energies in accordance with the Boltzmann weight.
However, recipes for such a construction are difficult and will certainly be very time
consuming. Related to this method is the Metropolis method,10 developed in 1953,
which abandons the idea of constructing statistically independent configurations
– rather, the configurations are constructed through a so-called Markov chain,
in which each new configuration is generated with a probability distribution
depending on the previous configuration.

Before considering Markov chains, we consider truly random, or uncorrelated

chains. For an uncorrelated chain, the probability of occurrence of a particular
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sequence of N objects X1, . . . , XN is statistically uncorrelated:

PN (X1, X2, . . . , XN ) = P1(X1)P1(X2) · · ·P1(XN ) (10.9)

where P1(X ) is the independent probability of occurrence for the object X (this
probability is assumed to be equal for each step). Truly random number sequences
are examples of uncorrelated chains – see Appendix B. A Markov chain is different
from uncorrelated chains – it is defined in terms of the transition probability T (X →
X ′) for having the object X ′ succeeding object X in the sequence. The probability
of having a sequence of objects Xi then becomes

PN (X1, X2, . . . , XN ) = P1(X1)T (X1 → X2)T (X2 → X3) · · ·T (XN−1 → XN ). (10.10)

The transition probabilities T (X → X ′) are normalised:
�

X ′
T (X → X ′) = 1. (10.11)

As an example, consider a random walk on a two-dimensional square lattice. At
every step, the random walker can jump from a point to each of its four nearest
neighbours with equal probabilities 1/4. This probability is, however, independent
of how the walker got there, that is, which path he followed in order to arrive at the
present point. An example of a non-Markovian (but correlated) sequence is given
by the self-avoiding random walk in which the walker is not allowed to visit a site
which has been visited in the past. Therefore, not only the last position determines
the probability for being at a specific site, but this probability depends on the full
history of the walk.

We want to generate a Markov chain of system configurations such that they
have a distribution proportional to exp[−βE (X )], and this distribution should
be independent of the position within the chain and independent of the initial
configuration. Under certain conditions, a Markov chain yields indeed such an
invariant distribution, at least for long times, as it needs some time to ‘forget’
the chosen initial distribution. We shall not go into details, nor give proofs,
but summarise these conditions – they are: (i) every configuration which we
want to be included in the ensemble should be accessible from every other
configuration within a finite number of steps (this property is called connectedness,
or irreducibility) and (ii) there should be no periodicity. Periodicity means that after
visiting a particular configuration, it should not be possible to return to the same
configuration except after t = nk steps, n = 1,2,3, . . ., where k is fixed. A Markov
chain which satisfies these criteria is called ergodic.

The Metropolis Monte Carlo method consists of generating a Markov chain of
configurations with the required invariant distribution, which in our case is the
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Boltzmann distribution exp(−βH ). We must therefore find a transition probability
T (X → X ′) which leads to a given stationary distribution ρ(X ) (to keep the
following analysis general, we use the arbitrary positive function ρ(X ) rather
than specify this to be the Boltzmann distribution). The number of possible
configurations, N , is assumed to be finite as the computer memory in which they
are to be stored is finite. The ‘matrix’ T (X → X ′) therefore has N 2 elements, as
opposed to only N elements of the ‘vector’ ρ(X ). This means that there are many
different solutions to this problem and we are allowed some freedom in finding one.

Let us introduce the function ρ(X , t) which gives us the probability of occurrence
of configuration X at ‘time’, or Markov step, t (for an ergodic chain, ρ(x, t)

becomes independent of t for large t). The change in this function from one step
to another is governed by two processes: (i) going from a configuration X at time t

to some other configuration X ′ at t +1, leading to a decrease of ρ(X ) and (ii) going
from some configuration X ′ at time t to X at time t +1, thus causing an increase in
ρ(X ). These mechanisms can be summarised in the formula

ρ(X , t +1)−ρ(X , t ) =−
�

X ′
T (X → X ′)ρ(X , t )+

�

X ′
T (X ′ → X )ρ(X ′, t). (10.12)

This equation is called the master equation. Remember that we are trying to find
the stationary distribution, which is found by requiring ρ(X , t +1) = ρ(X , t ), so that
we have

�

X ′
T (X → X ′)ρ(X , t ) =

�

X ′
T (X ′ → X )ρ(X ′, t). (10.13)

We omit the t-dependence of ρ from now on. It is difficult to find the general
solution to this equation, but a particular solution is recognised immediately:

T (X → X ′)ρ(X ) = T (X ′ → X )ρ(X ′) (10.14)

for all pairs of configurations X , X ′. This solution is called detailed balance

solution. Viewing the configurations X as buckets, each containing a certain
amount ρ(X ) of water, imagine that we make connections with pumps between
the members of each pair of buckets. Water is pumped from bucket X to bucket
X ′ with a pumping rate T (X → X ′)ρ(X ). Condition (10.14) makes sure that the
pumping rates between any pair of buckets X , X ′ is balanced: the flow from X to
X ′ is equal to the flow from X ′ to X , so that obviously the volumes ρ(X ) and ρ(X ′)
do not change. As this holds for any pair of buckets, the whole set of water volumes
in the buckets will remain stationary.

Let us now reformulate the detailed balance solution such as to make it suitable
for practical purposes. We write the transtion probability in the form

T (X → X ′) =ωX X ′ AX X ′ , (10.15)
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where the matrixωωω is symmetric: ωX X ′ =ωX ′X . Furthermore, it satisfies 0 ≤ωX X ′ ≤
1, and

�

X ′ ωX X ′ = 1. AX X ′ must lie between 0 and 1 for each pair X X ′. Substituting
this form of T into the detailed balance equation gives a detailed balance equation
for A:

AX X ′

AX ′X
= ρ(X ′)

ρ(X )
. (10.16)

In order to construct an algorithm, we use ωX X ′ as a trial step probability and
AX X ′ as an acceptance probability. This means that the algorithm proceeds in
two stages. In the first stage, given a state X , we propose a new state X ′ with a
probability given by ωX X ′ . In the second stage, we compare the weights of the old
and the new one, ρ(X ) and ρ(X ′). AX X ′ is chosen equal to 1 if ρ(X ′) > ρ(X ), and it
is chosen equal to ρ(X ′)/ρ(X ) if ρ(X ′) < ρ(X ). Obviously AX X ′ satisfies condition
(10.16). We accept the new state X ′ with a probability AX X ′ , and we reject it with a
probability 1− AX X ′ . If the state X ′ is accepted, it replaces X ; if the new state X ′ is
not accepted, the system remains in the state X . Note that if ρ(X ′) > ρ(X ), the state
X ′ is always accepted. We can summarise the Metropolis algorithm as follows:

T (X → X ′) =ωX X ′ AX X ′ ; (10.17a)
�

X ′
ωX X ′ = 1; ωX X ′ =ωX ′X ; (10.17b)

ωX X ′ > 0, for all X , X ′; (10.17c)

If ρ(X ′) < ρ(X ) : AX X ′ = ρ(X ′)

ρ(X )
; (10.17d)

If ρ(X ′) ≥ ρ(X ) : AX X ′ = 1. (10.17e)

The question now arises how we can accept a state with a probability AX X ′ ≤ 1,
and reject it with probability 1−AX X ′ . This is done by generating a random number
r uniformly between 0 and 1. If r < AX X ′ , the state is accepted, otherwise it is
rejected. It is clear that if this procedure is carried out many times with the same
probability AX X ′ , the state will be accepted a fraction AX X ′ of the total number of
trials.

Note that because the configurations are generated in a Markov chain, they have
correlations inherent to them. The theory of Markov chains guarantees that we
arrive at the invariant distribution ρ for long times; however, it may take much
longer than the available computer time to reach this distribution.

The total number of statistically independent configurations is given by the total
number of steps divided by the correlation ‘time’, measured in Monte Carlo steps.
Note that the number of steps is the total number of trials: do not fall into the trap of
counting only the successful trials as MC steps. As we have generated a sequence of
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configurations X with a statistical distribution exp[−βE (X )], the ensemble average
of a physical quantity A is given by the ‘time average’

A = 1

n −n0

n
�

ν>n0

Aν (10.18)

where n0 is the number of steps used for equilibration. Note that the ‘time’ n

is not physical time. This average is exactly the same as for MD simulations
discussed near the end of Section 8.2. For the determination of statistical errors
in the resulting averages we refer to the discussion in Section 7.4.

In the next subsections we shall work out the canonical ensemble MC method in
more detail for two examples of classical many particle systems, the Ising model
and the monatomic fluid.

It should be noted that the detailed balance condition can be fulfilled by
algorithms other than the Metropolis method. The Barker algorithm11, 12 reads

T (X → X ′) =ωX X ′
ρ(X ′)

ρ(X )+ρ(X ′)
for X �= X ′, (10.19a)

T (X → X ) = 1−
�

X �=X ′
T (X → X ′). (10.19b)

where ω satisfies the same criteria as in the Metropolis method. It can easily
be shown that this algorithm indeed satisfies the detailed balance condition. The
Metropolis solution however turns out to be more efficient.2

We can generalise the Metropolis procedure, in which for some pairs X , X ′ of
configurations, ωX X ′ is not equal to ωX ′X . In that case, the acceptance criterion for
an attempted move X → X ′ must be replaced by

AX X ′ = min(1, qX X ′) (10.20)

with

qX X ′ = ωX ′X ρ(X ′)

ωX X ′ρ(X )
. (10.21)

This is called the generalised Metropolis method. In the context of Monte Carlo
simulations, the method is also called smart Monte Carlo. It can easily be checked
that the generalised Metropolis method satisfies detailed balance.

We conclude this section by mentioning another variant of the Metropolis
method: the heat-bath algorithm. In this algorithm it is assumed that the trial
step involves one or a few degrees of freedom, the remaining ones being kept fixed
(this is the case in most Metropolis algorithms). The degrees of freedom which
may change are denoted x, the remainder of the system, which is kept fixed, is then
denoted symbolically as X −x. We assign now a new value to x according to

P (x) ∝ exp
�

−βH (x|X − x)
�

, (10.22)
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where H (x|X − x) is the Hamiltonian as a function of x, with X − x kept fixed. It
is easy to see that this procedure satisfies detailed balance, and that it is equivalent
to applying an infinite number of Metropolis steps to x successively, with fixed
X − x. The practical implementation of this method is often difficult, for reasons
to be explained below; however, for lattice models it can be implemented rather
straightforwardly.

10.3.1 Monte Carlo for the Ising model

The Ising model was discussed in Chapter 7. Here we consider the Metropolis
algorithm for the Ising model in two dimensions – the extension to more than two
dimensions is straightforward. In order to formulate the Monte Carlo method, we
must make a choice for the matrix ωX X ′ . For the two-dimensional Ising model on
an L×L square lattice, we take

ωX X ′ = 1/L2 if X and X ′ differ by one spin;

ωX X ′ = 0 otherwise. (10.23)

The realisation of the first stage of the Markov step – generating a trial
configuration – is then easy: we select a spin at random, and the trial configuration
is the present configuration with the selected spin turned over.

We then calculate the energy difference ΔE(X → X ′) between the old and the
trial configuration:

ΔE (X → X ′) = E(X ′)−E (X ). (10.24)

This is easy as there are only nearest neighbour interactions: the energy difference
depends only on the number of neighbours which are equal to the selected spin
in the old configuration – this is therefore an integer number between 0 and 4. If
the energy increases from the old to the new configuration, ΔE(X → X ′) > 0, the
trial state is accepted with probability exp[−βΔE (X → X ′)]. If however the energy
decreases, the trial state is always accepted as the new state. Implementation of
this algorithm for the two- or three-dimensional Ising model is straightforward;
the reader is encouraged to go through this exercise. The average number of steps
between two updates of the same spin is equal to L2. Therefore, the ‘time’ in a MC
simulation is often expressed in units of Monte Carlo steps per spin (MCS), 1 MCS
being equal to L2 trials.

– Programming exercise –

Write a program for simulating the nearest neighbour two-dimensional Ising model
on a square lattice using the Metropolis Monte Carlo technique.
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The following considerations should be borne in mind. It is convenient to have
a variable representing the total energy of the system. Usually, βE is recorded
rather than the energy E itself, as the behaviour of the system is fully determined
by βJ . This must be calculated at the beginning by performing a sweep over the
whole lattice. If, however, the initial state is one in which all the spins are the
same, the total energy for the L×L lattice with only nearest neighbour interactions
is simply given by −2βJL2, where βJ is the coupling constant. Every time a trial
configuration is accepted as the new one, we add the energy difference (which is
calculated at every step) to the total energy so that we always have the energy of the
new state at our disposal. Similarly it is possible to keep track of the magnetisation
during the simulation. The approach described here avoids having to calculate these
quantities every now and then by summing over the entire lattice.

As the acceptance probability exp[−βΔE (X → X ′)] can assume only five
different values, it is advisable to store these in an array in order to avoid calculating
the exponential function over and over again. It is nice to display the lattice after
every fixed number of MC steps on the computer screen and give the user the
opportunity to change the temperature during the simulation. A magnetic field can
also be included. Visual inspection should convince you that the phase transition for
zero field takes place somewhere around βJ ≈ 0.44, although critical fluctuations
make it difficult to locate this transition temperature with satisfactory precision.
The specific heat can be determined as the variance of the energy – see Eq. (7.28)
– and this should exhibit a peak near the critical temperature – see Figure 10.1.
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Figure 10.1: Specific heat per site in units of J/kB of the Ising 20×20 square lattice as a
function of the coupling constant reduced temperature τ= kBT /J .

The initial configuration will be chosen either random (infinite temperature)
or as one of the two ground states: all spins either + or −. In the first case,
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if the temperature at which the system is simulated is lower than the transition
temperature, spontaneous magnetisation may not always occur. In fact, several
large regions of spin + or of spin − will be formed, separated by boundaries which
are relatively smooth in order to minimise their energy. It will now take a very long
time before one of the two spin values dominates. This undercooling effect can
only be avoided by cooling the system gradually down to the desired temperature,
taking care that the cooling rate is particularly slow near Tc. After passing a first
order transition in a simulation, it is often impossible to arrive at the equilibrium
state within a reasonable amount of time as a result of the fact that the system cannot
overcome the free energy barrier separating the metastable from the stable phase.
This can also be checked: below the critical temperature, the Ising model exhibits
a first order transition triggered by the magnetic field. Going from a state with
positive magnetisation and positive magnetic field to negative (but small) magnetic
field, the magnetisation will not turn over. Making the field strongly negative will
eventually pull the system over the free energy barrier.

Check Produce a graph of the specific heat (measured in units of J/kB) as a

function of τ= kBT /J and compare it with Figure 10.1.

You could be tempted to calculate the magnetisation in order to compare this
with Figure 7.3. As we have just mentioned, cooling the system down from a high
temperature fails unless you cool very slowly through the critical region. However,
even if you start with the low temperature phase and heat the system up, you will
notice that the magnetisation vanishes for temperatures just below the transition
temperature. The point is that in order to let the magnetisation flip from a positive
value to a negative one, a domain wall separating the two phases must be built up.
Below the transition temperature, domain walls have a positive wall tension, that is,
they carry a free energy cost per unit length. Therefore, flipping the magnetisation
in the infinite system requires an infinite amount of free energy so that this will
never happen. In the finite system however, if the wall tension is still finite (and the
temperature therefore still below the finite-size critical point), the energy barrier
for a magnetisation flip is finite as the domain walls are necessarily finite – hence
the magnetisation will fluctuate around a positive or negative equilibrium value for
relatively long periods. But now and then it may switch sign, so that its long time
average vanishes. Figure 10.2 shows the typical behaviour of the magnetisation in
this phase. A histogram of the probability of occurrence for various magnetisations
shows a double-peaked shape. These problems also show up in the determination
of the magnetic susceptibility which can be expressed in terms of the variance of
the magnetisation.

Several methods exist for avoiding this problem:
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Figure 10.2: Magnetisation of a 20 × 20 Ising lattice as a function of time for an
effective coupling constant J/kBT = 0.46. The graph clearly shows plateaux where the
magnetisation fluctuates around positive or negative average values.

• A restriction to – say – positive magnetisation is built in. This option has the
disadvantage that the system is distorted and the consequences of this are not
a priori clear. Moreover the average magnetisation is always positive so it
becomes hard, if not impossible, to see where it would vanish without this
restriction.

• Making a plot of the magnetisation as a function of time and taking averages
only on the plateaus where the magnetisation is either positive or negative.
This method is, however, difficult to apply close to the transition, as the strong
fluctuations there will make it difficult to distinguish these plateaus clearly.

• Making a histogram of the magnetisation as mentioned above and taking the
peak positions as the value of the magnetisation. Again, distinguishing the
peak will be difficult when critical fluctuations are strong.

It will be clear that measuring the magnetisation close to the phase transition is a
difficult task which should be avoided if possible.

It should be noticed that the Ising model is formulated without a prescription
for its dynamical evolution. Consequently, there exists no molecular dynamics
method for the Ising model and Monte Carlo is the only simulation technique for
spin systems such as the Ising model. Using the Metropolis method, the Ising
model becomes dynamic in the sense that its configurations change with time. The
kinetics of this behaviour have been studied, first because it is assumed that the
dynamic evolution of Ising-like systems in nature is governed by processes not
too dissimilar from Metropolis MC and second because the kinetics is relevant to
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the reliability of the simulations, in particular near the critical point.13, 14 Recall
that the dynamical behaviour close to the phase transition is expressed in terms of
the dynamic critical exponent, z, which describes the divergence of the correlation
time – see Section 7.3.2.

Our choice for the matrix ωX X ′ is not the only possibility. We may allow for two
(or more) spins flipping over at the same step, and these spins might be restricted
to be opposite so that the total magnetisation does not change, giving us a constant-
magnetisation algorithm. In all cases, instead of selecting the spins randomly, they
may be chosen in a regular fashion, for example by scanning through the lattice row
by row. In that case, one step in the Markov chain consists of a scan through the
whole lattice. ωX ,X ′ is equal for any new configuration X ′ and it remains to show
that the acceptance probability for each such new configuration is proportional to
exp[−βΔE (X → X ′)]. This can be done using induction – see problem 10.1 and
Ref. 15.

The heat-bath method (see above) can be implemented straightforwardly for the
Ising model. Suppose the spin si selected by the random generator is surrounded
by n+ + spins and n− = 4−n+ − spins. In that case the Hamiltonian for the spin si

in the fixed neighbour configuration is given by

H (si |S − si ) =−J (2n+−4)si . (10.25)

Therefore, si is given the value + or − with probabilities

P+ = e(2n+−4)βJ

e(2n+−4)βJ +e−(2n+−4)βJ
and (10.26a)

P− = e−(2n+−4)βJ

e(2n+−4)βJ +e−(2n+−4)βJ
. (10.26b)

Using the heat-bath instead of the Metropolis method results in a substantial
decrease of the correlation time. We shall encounter this method again in
Chapter 15, where we present results for the correlation times for the scalar lattice
field model. We shall return to the Ising model in Section 15.5.1 where we discuss
algorithms which are much more efficient near the critical point than the standard
MC methods discussed here.

10.3.2 Monte Carlo simulation of a monatomic gas

The Metropolis MC technique enables us to calculate averages of static quantities.
Therefore, the momentum degrees of freedom are irrelevant and we integrate
these out as in Section 7.2.1, so that the Boltzmann factor depends only on the
configurational potential energy:

ρ(R) = exp[−βU (R)], (10.27)
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where R is the combined position coordinate r1, . . . ,rN . The configurational
potential energy U (R) is usually written as a sum of pair-potentials as in the
previous chapters.

The Monte Carlo procedure for a monatomic gas proceeds as follows. The matrix
ωX X ′ is chosen such that only one particle may be moved to a new position – it is
selected at random and the remaining particles are kept fixed. The new position
of the particle is chosen at random with a homogeneous distribution within a cube
centred at the old position of the particle.† The energy difference is calculated
and the trial configuration is accepted or rejected as usual, with an acceptance rate
exp[−βΔE (X → X ′)].

The displacement volume remains to be specified. Any cube should lead to
the correct behaviour as the requirements of the Markov chain (connectedness
and aperiodicity) and the detailed balance condition are fulfilled, but there will
obviously be a particular cube size yielding optimum efficiency, where efficiency
can be defined as the number of statistically independent configurations that we can
generate in a fixed amount of computer time. Obviously, if the cube is chosen very
small, particles are allowed to move over small distances only and it will take many
MC steps to arrive at a statistically independent configuration. On the other hand,
if the cube is chosen too large, the particles will on average make large moves.
This changes the configuration of the system to such an extent that the energy will
increase strongly in the large majority of cases. The probability that the trial move
is accepted will then be vanishingly small and we spend most of our time generating
configurations which are subsequently rejected, so the configuration changes very
slowly in that case as well.

A widely adopted rule of thumb is to choose the cube such that the acceptance
rate of trial states is on average somewhere between 0.4 and 0.6. Although for hard
sphere systems it should perhaps be lower (around 0.1),11 this rate is generally
relied upon as being reasonably efficient.2

When programming the Metropolis method for the case of argon, much of
the MD code (see Section 8.3) can be copied. The particles are again released
from face-centred cubic (fcc) lattice positions. Every trial displacement should
be performed respecting the periodic boundary conditions. Calling half the linear
size of the cube dmax, the trial displacement (without correcting for PBC) in the
x-direction is given in terms of a random number 0 ≤ r < 1 as

xnew −xold = dmax(2r −1) (10.28)

and similarly for y and z. A neighbour list may be kept as in the MD case – however
the list must be constructed such that we have at our disposal all the neighbours (at

†The cubic shape is not essential – it is chosen for convenience.
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a distance smaller than the neighbour list cut-off rcut-off) for every particle. This
means that we need twice as much storage in comparison to the MD method where
only the neighbours with an index higher than the particle under consideration are
stored in the list. As in the Ising case, the total potential energy can be updated
after every acceptance of a trial configuration. The same can be done with the
virial. Physical properties to be calculated are the same as in MD simulations: the
pressure, the configurational energy, and the pair correlation function. Any quantity
dependent on the positions only can be determined – remember the momenta are
not considered in the MC method.

– Programming exercise –

Code the Metropolis method for argon, and compare the results with those of the
molecular dynamics program; see table 8.1.

The heat bath method turns out impractical in this example. If we were to
use the pure heat bath method, we would have to allow the particle to move to
any position in the system cell. This can only be done using the Von Neumann
algorithm (see Section B.3), but as the vast majority of positions in the cell are
unacceptable, this is very inefficient. One could imagine a ‘hybrid’ heat bath
method, in which we move the particle to a new position in a small sphere or
cube centred at the old position with a probability distribution determined by the
conditional Hamiltonian H (ri |R − ri ), using the symbolic notation of Eq. (10.22).
This can only be done using the Von Neumann method (see Section B.3). The
difference with the Metropolis method is that the new position is accepted with a
probability which is independent of the previous one (except for the sphere or cube
being centred on the old position). To apply the Von Neumann method, we should
know the minimum of the conditional Hamiltonian, as the acceptance probability in
the Von Neumann method may never exceed 1. We might guess a lower bound for
this minimum, but this will often be much lower than the actual potential minimum,
so that the acceptance rate becomes very small. Because of these difficulties, the
heat-bath method is not used for atomic or molecular systems.

Just as in the case of the Ising model, we may sometimes suffer from critical
slowing down due to a diverging the correlation time close to a critical point.
Methods have been developed which dramatically reduce this effect. A recent
breakthrough in this field is the Liu–Luijten algorithm.16

10.4 Other ensembles

The canonical ensemble is the most natural ensemble for MC simulations. It is,
however, possible to simulate other ensembles by the Metropolis MC method. We
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shall consider the isothermal-isobaric, or (N PT ) ensemble, and the grand canonical
ensemble. There exists also a microcanonical MC method,17 but this is seldom used
as it is of little practical importance.

10.4.1 The (N PT ) ensemble

The (N PT ) ensemble is relevant because temperature and pressure are often kept
fixed in experiments. A Monte Carlo method for this ensemble was first developed
for hard sphere systems by Wood18, 19 and later extended to smooth potentials by
McDonald.20, 21 We consider the latter case here.

The (N PT ) ensemble average of a physical quantity A depending on the positions
R = r1, . . . ,rN is given as

〈A〉(N PT ) =
�∞

0 dV e−βPV
�

dR A(R)e−βU (R)

Q(N ,P,T )
. (10.29)

Q is the partition function which is related to the Gibbs free energy: G =
−kBT lnQ(N ,P,T ) – see Section 7.1. As the volume is allowed to vary, we extend
the notion of a configuration to include the volume in addition to the set of particle
positions, R = (r1,r2, . . .rN ), with the restriction that the latter should all lie within
that volume. A Markov chain must be constructed in which particle moves and
volume changes are allowed. It is, however, impossible to change the volume
independently from the particle positions, as a decrease of the volume would hardly
be possible since particles quite close to the wall may fall outside the volume after
such a contraction. Therefore, a change in volume must be accompanied by an
appropriate rescaling of the particle positions.

To be more specific, let us consider a cubic volume L×L×L with the edges along
the positive Cartesian axes. We scale the particle positions according to ri = si L

so that the positions si lie within the unit cube. The average (10.29) can now be
written as

〈A〉(N PT ) =
�∞

0 dV e−βPV V N
�

dS A(LS)e−βU (LS)

Q(N ,P,T )
(10.30)

where S denotes the combined positions s1, . . . ,sN . When changing the volume, S

remains the same; the change in the real positions ri is accounted for by a change
in the Jacobian V N and the various factors L in (10.30). The Boltzmann weight of
the (NV T ) ensemble method is replaced by

ρ(V ,S) = e−βPV V N e−βU (LS). (10.31)

A step in the Metropolis Markov chain consists either of a particle move, which is
performed exactly similar to the particle moves in the (NVT) ensemble method, or
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a volume change. The calculation of the ratio of the weights before and after the
volume change consists of calculating the change due to the potential energy,

exp
�

−β[U (LnewS)−U (LoldS)]
�

(10.32)

and multiplying this by the ratio of the terms involving the volume coordinate:

exp
�

−βP (Vnew −Vold)
�

�

Vnew

Vold

�N

. (10.33)

The product of (10.32) and (10.33) defines the acceptance ratio of the new
configuration according to the Metropolis recipe. Eppenga and Frenkel22 have
applied the method with the logarithm of the volume as the extra coordinate rather
than the volume itself.

The calculation of the potential energy difference associated with a volume
change is rather demanding – as all positions change, we must sum over all pairs of
particles. If the potential can be written as a linear combination of powers (σ/r )k ,
the calculation can be performed very fast, because the energy difference in the
exponent of (10.32) due to a term (σ/r )k can be evaluated as

σk
�

i< j

(Laftersi j )−k =σk

�

�

i< j

(Lbeforesi j )−k

�

(Lbefore/Lafter)
k , (10.34)

that is, this contribution to the potential energy changes simply by an overall scaling
factor! If the potential is a linear combination of such powers (e.g. the Lennard-
Jones potential), this formula can be used, provided that the contributions to the
total potential energy due to each power are stored separately.

A possible problem needs some attention. If the potential is cut off beyond a
range rcut-off, we must correct for this in the total energy using Eq. (8.18). The
correlation function, g , occurring in this formula is usually replaced by 1, in which
case this term does not contribute to the total energy difference in MC steps.
Therefore, the cut-off is distance is usually kept constant. In the special case of
a potential consisting of a sum of powers, where we would like to calculate the
potential energy difference using the simple scaling procedure just described, we
would like to scale the cut-off with the linear system size, rcut-off = Lscut-off, so that
(10.34) remains valid. It should be noted, however, that in that case the correction
to the potential (which depends also on the density N /V , which changes at each
rescaling) has to be included in the calculation of the energy difference in this case
using Eq. (8.18).

We have the freedom to choose the relative frequency with which particle
moves and volume changes are attempted. If the scaling method just described
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for calculating the potential cannot be used because of invariant intramolecular
configurations, or because of more complicated parametrisations of the potential,
calculating the potential energy difference due to a volume change becomes quite
expensive and volume changes should be attempted at a much lower rate than
particle moves. If however the method of Eq. (10.34) is applicable, both types
of changes can be attempted with equal probability.

10.4.2 The grand canonical ensemble

In 1969, Norman and Filinov23 developed a Metropolis Monte Carlo method for
simulating many-particle systems in the grand canonical ensemble. In this case
the temperature, the system volume and the chemical potential are given, and
the particle number and pressure vary; their average values can be determined to
establish the equation of state. As the particle number does not remain constant,
creation and annihilation of particles should be possible. Let us write down the
probability distribution of configurations in this ensemble. The grand canonical
ensemble average of a configurational physical quantity A is given by

〈A〉µV T =
�∞

N=0 1/N !eβµN
Λ

−3N
�

dRN A(RN )e−βU (RN )

ZG(µ,V ,T )
; (10.35)

Λ = h/
�

2πmkBT in the case of a monatomic gas – it results from integrating
out the momentum degrees of freedom. We have attached a subscript N to the
positional coordinate R because the number of particles is not fixed.

It is clear from (10.35) that the configurations are now defined by the number
of particles N and by their positions RN . The weight factor which replaces the
Boltzmann factor of the (NV T ) ensemble now becomes

ρ(N ,RN ) = e−βU (RN )
Λ

−3N /N !eβµN (10.36)

and the Metropolis algorithm can be applied directly, provided that in addition to
the usual particle moves, we allow for particle creations at random positions and
annihilations of randomly chosen particles. The algorithm for a Metropolis step
then becomes:

• Decide whether the next trial configuration is constructed via a creation,
annihilation, or a particle move according to the probabilities for these
processes given by the matrix ωX X ′ (note that the trial rates for creation and
annihilation should be equal in order to keep ωX X ′ symmetric). This choice
can be made simply by dividing the interval [0,1] up into three segments with
sizes equal to the respective probabilities, generate a random number uniformly
between 0 and 1, and then check in which segment this number lies.
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• If a creation is attempted, a random position in the system is selected and the
interactions between a new particle inserted at that position and the remaining
ones are added to yield a potential energy difference ΔU+ =U (RN+1)−U (RN ).
As the probability that the new particle ends up in the volume element d 3rN+1

is given by d 3rN+1/V , we accept the creation with a probability

e−βΔU+
Λ

−3V /(N +1)eβµ. (10.37)

• If an annihilation is attempted, one of the existing particles is selected at
random, and its interaction with the remaining particles, ΔU− = U (RN−1) −
U (RN ), is calculated. The annihilation is then accepted with probability

e−βΔU−
Λ

3N /V e−βµ. (10.38)

• Particle moves are processed similarly to the canonical case. Only the potential
energy difference enters into the acceptance probability.

This form of grand canonical Monte Carlo was presented by Norman and Filinov.23

Other approaches turn particles into ‘ghost’ particles instead of annihilating
them,24, 25 and these ghosts can be switched on so that they enter the real life of the
simulation again. The Norman-Filinov version is, however, more popular.

It is possible to change the relative rates of the creation and annihilation process
and correcting for this by a suitable change in acceptance rates of the corresponding
trial configurations. This was done for example by Saito and Müller-Krumbhaar26

– see also problem 10.3. These methods may be useful in situations where the
acceptance rate for particle creation in the standard method becomes exceedingly
small due to a high value of the chemical potential.

It should be noticed that at high densities, insertion of new particles is likely to
fail because the probability of spatial overlap between the new particle and the
existing ones becomes very high. In this case, the Boltzmann factor is small,
not as a result of a high value of the chemical potential but as a result of the
interactions between the new particle and the existing ones. Methods have been
devised for locating ‘cavities’ in such fluids and creating particles preferentially in
these regions.27

More details on grand canonical Monte Carlo methods can be found in refs. 2
and 28.

10.4.3 The Gibbs ensemble

Studying the coexistence of different phases of the same material, and of different
species which can transform into each other via chemical reactions, is difficult
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using the ensembles defined up to now. We know that for coexistence to be
possible, the different phases or species must have equal temperature, pressure
and chemical potential. We shall use the name ‘species’ in the context of both
chemical mixtures and phase transitions in the following. If we fix pressure and
temperature, the chemical potentials of the different species will in general not be
equal and one species will grow at the expense of the other, until either one of the
two has disappeared or until the chemical potentials are equal. However, it is often
very hard to achieve equilibrium in such cases since droplets surrounded by domain
walls with a nonvanishing wall tension need a long time to disappear.

Panagiotopoulos29, 30 has developed a method in which two subsystems are
considered with no interface between them so that they are free to exchange
particles without having to overcome free energy barriers. The method is called
‘Gibbs ensemble method’. The method is quite simple. Consider a volume V

which is divided into two subsystems with volumes V1 and V2 by a freely movable
piston. The volume V =V1+V2 is fixed – therefore, the total system is described by
the (NV T ) ensemble. Furthermore, there is a virtual hole in the piston via which
particles can move from one subsystem to the other. Most importantly: there are
no interactions between the particles of the two subsystems, that is, if a particle
moves from V1 to V2, the energy difference it feels consists of the interactions with
its partners in the new subsystem (V2) minus the interactions it felt in its previous
subsystem (V1). These moves are actually executed in the Gibbs ensemble MC
method, alongside the usual particle moves within the two subsystems and relative
changes of the two subsystem volumes. In order to be able to vary the subsystem
volumes, we scale the particle positions RK = LK SK where the index K = 1,2

labels the subsystem and LK =V 1/3
K

. The weight of a configuration with subsystem
volumes V1 and V2 =V −V1, subsystem particle numbers N1 and N2 and subsystem
configurations S1 and S2 is given by

ρ(V1, N1,S1,V2, N2,S2) =
V

N1

1

N1!

V
N2

2

N2!
e−βU (L1S1)e−βU (L2S2). (10.39)

This expression follows directly from the weight factors for the ensembles
considered in the two previous subsections (the pressure and the chemical potential
occur with V1 +V2 and N1 +N2 respectively, which are constant).

Equation (10.39) determines the detailed balance transition probabilities in a
Metropolis algorithm:

• The matrix ωX X ′ is a probability for volume changes, particle transfers from
subsystem 1 to 2 or vice versa, and for particle moves in either 1 or 2
respectively. The matrix elements for particle moves are chosen such as to
allow for single particle moves only, with equal probability for each particle.
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• Particle moves in each subsystem are processed with the probabilities based on
the factor

exp
�

−β
�

U
�

LSnew
K

�

−U
�

LSold
K

���

. (10.40)

• For subsystem volume changes we find for the acceptance rate (see also
subSection 10.4.1):

�

K=1,2

exp
�

−β
�

U
�

Lnew
K SK

�

−U
�

Lold
K SK

���

�

V new
K

V old
K

�NK

. (10.41)

• Acceptance rates for particle transfers from subsytem 1 to subsystem 2 involve
the energy difference ΔU±

K
for removing (−) or adding (+) a particle to the

subsystem analogous to the grand canonical MC method:

exp
�

−β
�

ΔU+
2 −ΔU−

1

�� N1

N2 +1

V2

V1
(10.42)

and similarly for transfers from subsystem 2 to subsystem 1.

These transition rates define the Gibbs ensemble Monte Carlo method. It should
be noted that this method is still susceptible to the kind of problems described in
connection with the grand canonical Monte Carlo method: moving a particle from
one subsystem to another may have a prohibitively low acceptance rate at high
densities, due to the large increase of configurational energy in most such attempts.

It is not necessary to separate the two subvolumes by a movable piston in
order to arrive at equal pressures in both subsystems: it is also possible30 to
couple both subsystems to a ‘pressure bath’ with predefined pressure P similar
to the (NPT) method described in Section 10.4.1, and imposing no restriction on
the total volume V1 +V2. This method is less suitable for phase coexistence as
the coexistence occurs on a line in the (P,T ) diagram. Therefore we need to
know exactly the location of that line, as we have to specify T and P in this
method. In the original version, the system will move to the coexistence line by
adjusting pressure and chemical potential simultaneously. In the case of chemical
equilibrium, however, the coexistence region has a finite width and the constant
(P,T ) version is useful there. The Gibbs ensemble method has become very popular
for studying coexistence equilibria in recent years.29–32

*10.5 Estimation of free energy and chemical potential

In Section 7.1 we have already mentioned the difficulties involved in calculating
free energies. We described briefly the method of thermodynamic integration.
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Other methods have been proposed and these are easier to understand in the context
of MC trials and this is the reason why we discuss them in this chapter. It should,
however, be noted that the methods described below are not restricted to MC. Some
are applicable within MD, especially in the canonical (NV T ) MD method. In
view of the equivalence of ensembles, microcanonical MD allows for using these
methods too.33

The reader is referred to refs. 28 and 32 for more details concerning the material
in this section.

10.5.1 Free energy calculation

The difficulty in free energy calculation is that it cannot be formulated directly as a
‘mechanical average’, that is, an ensemble average of functions of the coordinates
ri (and pi in the case of MD). Rather, the free energy must be evaluated as a
sum (or integral) over phase space. Clearly, both MD and MC methods sample
that part of phase space from which the dominant contribution to the free energy
arises; however, this does not provide an estimate of the phase space volume
integral, as the frequency with which phase space points are visited is proportional
to the Boltzmann weight, with an unknown proportionality factor. Moreover, it is
questionable whether the number of points visited in a typical simulation would be
sufficient to sample the relevant phase space volume adequately.

It is nevertheless possible to formulate the free energy difference between two
systems with different interactions as a mechanical ensemble average. The first
method for doing this is thermodynamic integration, described in Section 7.1.1.
This method suffers from the fact that many simulations are needed in order
to calculate free energy differences. We shall now describe a few alternative
procedures for this purpose.

Suppose the two systems have interactions described by the potential functions
U0 and U1. We show now that the partition function of system 1 can be rewritten
as a meachanical average with the Boltzmann factor of system 0. Writing the
respective partition functions as Z0 and Z1 we have

Z1

Z0
=
�

X e−βU1

�

X e−βU0
=
�

X e−βU0 e−β(U1−U0)

�

X e−βU0
=
�

e−β(U1−U0)
�

0
, (10.43)

where 〈. . .〉0 represents an ensemble average in system 0.
Applications of (10.43) are restricted to systems for which the regions they tend

to occupy in phase space have appreciable overlap. This can be seen by considering
two systems with the same potential function but kept at different temperatures,
U1 = αU0. If α < 1, system 1 is at a higher temperature than system 0. If we
evaluate the expectation value in (10.43) using MC or MD, the result contains the
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contributions to Z1 arising from the equilibrium states of the same system at lower
temperature – hence the free energy estimate will be drastically wrong as a result of
not taking the overwhelming majority of high-energy states contributing to Z1 into
account. On the other hand, if α< 0, the system will visit configurations with high
energy and rarely assume one of the lower energy configurations which contribute
to the partition function of system 1. Sufficient overlap between the phase space
volume occupied by the two systems is essential. One way to achieve such overlap
is to simulate a chain of systems with potentials Up that interpolate between U0

and U1, such that subsequent configurational potential functions Up ,Up+1 have
sufficient overlap to give reliable results. This means that the amount of computer
time needed is comparable to that of thermodynamic integration, which uses a chain
of different thermodynamic parameters.

Torrie and Valleau have refined the method by adding an extra weight function
W (X ) to the average in (10.43), which pushes the system to a different region
of phase space such as to reduce the overlap problem. Their method is called
‘umbrella sampling’ and we refer to their paper for a description of the method
and examples.34, 35

Bennett33 writes the free energy difference in another way, by defining the
‘Metropolis function’ M(x) as M(x) = min[1,exp(−x)]. Then we have

exp
�

−β(U0 −U1)
�

= M
�

β(U0 −U1)
�

/M
�

β(U1 −U0)
�

(10.44)

from which it follows that

Z0

�

X M
�

β(U1 −U0)
�

e−βU0

Z0
= Z1

�

X M
�

β(U0 −U1)
�

e−βU1

Z1
. (10.45)

The quotients in this expression are canonical ensemble averages corresponding to

Z0

Z1
=
�

M
�

β(U0 −U1)
��

1
�

M
�

β(U1 −U0)
��

0

. (10.46)

This equation is now used as follows. We perform two simulations, one with
potential U0, and one with potential U1. We consider switching the potential in
system 0 from U0 to U1 as a trial move for which we calculate the acceptance ratio,
but which is in fact never carried out. Taking the average of the acceptance ratios
of such moves gives the numerator of (10.46). Similarly, the denominator is given
as the acceptance ratio of trial switches from U1 to U0, evaluated in the system with
potential U1. Again, this method is reliable only for appreciable overlap between
the two equilibrium distributions in phase space. Bennett’s method can also be
extended with a weight function similar to that of Torrie and Valleau, and Bennett
calculates the actual form of this function which gives the most accurate results.
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Bennett furthermore describes an interpolation method to estimate the free energy
difference even if the overlap between the distributions is very small. His paper
should be consulted for details.33

10.5.2 Chemical potential determination

Determining the chemical potential is done using relation (7.13), which enables
us to extract this thermodynamic quantity as a free-energy difference between two
systems with N and N+1 particles respectively. The exponential of this free energy
difference can be written as the fraction of two partition functions:

ZN+1

ZN
= N !Λ3N

(N +1)!Λ3(N+1)

�

dRN+1 exp
�

−βU (RN+1)
�

�

dRN exp
�

−βU (RN )
� =

V

(N +1)Λ3

�

1

V

�

d 3rN+1 exp
�

−βΔU+
�

�

N

= e−βµ (10.47)

where ΔU+ is the energy of a particle inserted at rN+1 into the N -particle system.
The prefactor V Λ

−3/(N + 1) of the expectation value on the right hand side is
exp(−βµideal), where µideal is the chemical potential of the ideal gas. The term
within brackets gives the expectation value of the Boltzmann factor associated with
the energy difference for the addition of a particle anywhere in the system. This
expectation value is determined via trial additions which are regularly performed
but never accepted. After each MC step we generate a position r at random in
the system and calculate the factor exp

�

−βΔU (rN+1)
�

. The factor 1/V within
the brackets ensures the proper evaluation of the average. These values are then
used to calculate the required expectation value by dividing by the number of such
trial additions. This method is called ‘Widom’s particle insertion method’.36 The
method works well, although problems arise for high densities. In that case the
Boltzmann factor is very small for most trials, because the probability that the core
of the new particle overlaps with one of the existing particles becomes very high.
There have been refinements in which the particle insertions are biased towards the
cavities in the fluid.22, 37, 38

Instead of particle insertions, particle removals could be used to find the chemical
potential. In this case we would use the inverse of Eq. (10.47):

ZN−1

ZN
= N !Λ3N

(N −1)!Λ3(N−1)

�

dRN−1 exp
�

−βU (RN−1)
�

�

dRN exp
�

−βU (RN )
� =

NV Λ
3

�

1

V

�

d 3rN exp
�

βΔU−
�

�

N

= e+βµ. (10.48)
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However, generalisation of the method proposed above to this case usually fails as
the sampling of exp

�

βΔU−
�

is very inefficient. The reason is that we are trying to
calculate

�

exp(βΔU−)
�

whereas the Boltzmann weight factor used in the average
includes a factor exp(−βΔU−). The latter squeezes the high-ΔU contributions
off and these contribute significantly to the average. Shing and Gubbins37 have
formulated an efficient method combining particle insertions and removals.

10.6 Further applications and Monte Carlo methods

10.6.1 Generating ensembles of polymers

An important topic in statistical mechanics is the behaviour of polymers: long and
flexible chain-like molecules. These can be studied as a melt (a kind of liquid
consisting of polymers) or in solution. A nice review on models, theory and Monte
Carlo methods for this problem can be found in Ref. 39. We focus here on the
problem of a dilute polymer solution. In that case, if we can somehow model
the effect of the solvent in terms of a simple interaction, the problem reduces
to studying ensembles of individual polymers in different conformations. If the
solvent is good, then the free energy for a polymer segment which is on all sides
embedded in the solvent is lower than that of a polymer segment which is close to
another polymer segment, without solvent molecules in between them. This picture
boils down to an effective repulsion of the polymer segments.

It is useful to make a model in which the important properties of the polymer are
preserved, whereas the details of its structure on the atomic scale have disappeared
from the description. This is related to the idea of universality (see Section 7.3.2):
only a few major features of the interactions at small length scales influence the
behaviour on longer length scales; the details do not matter. We therefore make a
‘mesoscopic’ model of the polymer. It is a chain consisting of beads: the beads
represent segments of the polymer; the segments in turn represent groups of atoms.
These atomic groups have a strong short-range interaction, as they are chemically
bonded. Remote segments influence each other through a Van der Waals attraction,
and they repel when they overlap. However, the solvent effect described above
represents another type of repulsion which forces the beads to remain at a minimum
distance of at least a few solvent layers. All these characteristics can be summarised
in the following polymer model:

• The polymer consists of N beads, which are represented as point particles.
Neighbouring beads have a fixed mutual distance. This is the only interaction
between them.

• Remote beads feel a repulsion at short distances and a Van der Waals attraction
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at longer distances. Their interaction can be modelled by a Lennard–Jones
shape [see Eq. (7.33)].

Note that if we switch off the Lennard–Jones interaction, the polymer represents
a random walk: this is called the ideal chain case. If, on the other hand, the beads
repel each other, we are dealing with a self-avoiding walk (SAW) as the chain
cannot cross itself. Often, polymers are studied on a lattice, which is an even
further restriction of the model, but asymptotic (large length scale) behaviour is not
sensitive to this. For a review of lattice algorithms, see Ref. 40. Here we shall
discuss algorithms for simulating the off-lattice model. Most of the methods used
in this field have a very similar counterpart in the lattice case.

Note that the behaviour of the polymer is independent of temperatures for high
temperatures. This is because the Lennard–Jones interaction is then dominated by
the repulsive term, which is always noticeable, even when the temperature is very
high. The quantities which are of interest are the end-to-end distance, which is the
distance from the first to the last bead, and the radius of gyration [see Problem 1.2].
We shall restrict ourselves here to studying the end-to-end distance as a function of
N for polymers in two dimensions.

Our aim is to generate (an ensemble of) polymer configurations which are
distributed according to the canonical distribution at a given temperature. Then
we can calculate physical properties for this temperature as an average over the
ensemble. Now let us consider possible steps in a standard Metropolis algorithm.
We cannot move a single bead, as we should keep the distance to its neighbours
constant. An obvious alternative is to choose a bead at random and change the
angle between this bead and its two neighbours by some amount. If the polymer is
‘curled up’, which turns out to be not unlikely in typical simulations, there are very
few such moves that will be accepted. Algorithms based on this type of moves are
called ‘pivot algorithms’: the selected bead acts as a pivot for changing bending or
(in three dimensions) dihedral angles.

Another approach is inspired on type of motion of polymers: reptation. This is
a snake-type motion which, in the case of the Monte Carlo algorithm, works as
follows. A trial step consists of removing the This means that for two replicas n

and m in our collection, the temperatures are exchanged. In fact we can exchange
either the temperature or the configurations. last bead (the ‘tail’) of the polymer
and this is attached to the head. Acceptance of this move proceeds according to the
standard Metropolis criterion.

The previous methods are typical Metropolis methods, in the sense that every
conformation is strongly correlated with the previous one, and these correlations
may result in extremely slow relaxation. Another approach tries to avoid this
correlation by generating a new polymer at each step. This must be done
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quite carefully as simply adding beads will typically result in very unprobable
conformations. This is because there will certainly be overlaps or crossings in
this method. We should therefore add new segments to the polymer in a careful
way, avoiding high-energy conformations.

A method in which this is done is the Rosenbluth algorihm.41 We start with two
beads on positions (0,0) and (1,0) (the distance between the beads is taken to be
1). Now we add the third one. This is characterised by the angle made by the three
beads. The Metropolis algorithm suggests that it would be wise to add the third one
with a distribution exp[−E (θ)/(kBT )], where E(θ) is the interaction energy of the
third bead (of angle θ) with the first two. This is however difficult to do if we do not
want to use many trial steps. Therefore we discretise the space of possible θ-values
to obtain a finite number of, say, six different values of θ, with a random offset and
spaced by 2π/6. Now we calculate the weights w (l )

j
= exp[−E(θ j )/(kBT )] for these

six θ-values numbered by j (l denotes the bead we are adding), and their sum W (l ):

W (l ) =
�

j

exp[−E(θ j )/(kBT )]. (10.49)

We accept angle j with probability w (l )
j

/W (l ). This is done by the ‘roulette-wheel’
algorithm. In fact, what we do is divide up the interval [0,1] into six segments of
size w (l )

j
/W (l ). Then we calculate a uniform random number between 0 and 1, and

we check which segment j it corresponds to. Then we choose the corresponding
θ j . The final Boltzmann weight of the polymer is exp[−Etotal/(kBT )], where Etotal

is the total energy of the chain. Some reflexion may convince you that this is
equivalent to the product of the w j :

exp[−Etotal/(kBT )] =
N
�

l=3

w (l )
j

(10.50)

where j denotes the choice which has been made for the angle θ at step l .
We choose as parameters of the Lennard–Jones potential ǫ = 0.25, and σ = 0.8

(the distance between the polymers is taken to be 1). If the algorithm would do
what we want it to do, it should generate the polymers distributed according to
(10.50). Calculating the actual probability for a particular configuration to occur,
we find that it is

P ∼
N
�

l=3

w (l )
j

W (l )
. (10.51)

We see that we are off by a factor
�

l W (l ) – we must correct for this by storing
this number into a weight factor for calculating properties of the polymers in the
generating ensemble. The weighting factor thus compensates for the fact that the
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actual probability of occurrence does not match (10.50). The method described
here is known as ‘method A’. If we would take all θ angles with an equal probability
of 1/Nθ, where Nθ is the number of angles (six in our example), then we should
take for the weights of each polymer

�N
l=1

w (l )
j

(check this!). This is known as
‘method B’.

An interesting quantity to look at is the end-to-end distance as a function of the
number of beads N . In fact, the Rosenbluth algorithm is extremely useful for this
case as it generates polymer populations for all lengths up to the maximum set
in the simulation. We have seen that the polymer corresponds to a self-avoiding
random walk in two dimensions. It turns out that the end-to-end length scales with
N as

R ∝ Nν, (10.52)

where ν is an exponent which is 0.75 in two dimensions. The crosses with errorbars
in Figure 10.3 show the scaling behaviour as determined in the Rosenbluth
algorithm. For this figure, 10000 polymers were grown up to a size of 250 beads.
We see that the simulation reproduces the scaling behaviour well for small sizes, but
when the sizes exceed 100, the errors become rather large. This seems surprising
as the population sizes are equal for all polymer lengths, and the statistics for
long polymers should only become better (unless the fluctuations in R increase
with polymer length). The reason behind these flucuations is the fact that the
algorithm generally does not suppress high-energy configurations sufficiently; they
will be accepted, but with a low weight. This effect becomes more pronounced
for long chains – therefore we have a large population with only a few polymers
dominating the average, and most members of the population not contributing to
better statistics.

A solution to this problem is offered in the ‘pruned-enriched Rosenbluth method’
(PERM) by Grassberger,42 in which populations evolves towards a more balanced
distribution by removing the ‘bad’ configurations from it and replacing them
by copies of the good ones which can then further evolve independently in
the simulation. Before going into details, we consider the standard Rosenbluth
algorithm formulated in a recursive implementation:

Set PolWeight to 1;
ROUTINE AddBead(Polymer, PolWeight, L)

Calculate the weights w L
j

and their product W L;
Add bead number L;
PolWeight = PolWeight∗W L;
IF L<N THEN

AddBead(Polymer, PolWeight, L+1);
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Figure 10.3: Scaling behaviour of the square of the end-to-end length R as a function of
N on a semi-log scale. Crosses with error bars: Rosenbluth algorithm. Double crosses:
PERM algorithm. The circles are the population sizes in the PERM algorithm. The drawn
line has the form a(N −1)0.75, where a is chosen to fit the data.

END IF
END ROUTINE AddBead.

A careful read of this pseudocode should convince you that this routine is equivalent
to the Rosenbluth algorithm described above. The PERM algorithm cleverly uses
this recursive type of procedure in order to perform pruning (i.e. the removal of
weak members of the population) and enrichment (the proliferation of the strong
members) in a single recursive procedure without having to analyse an entire
population. Note that by ‘weak’ we denote conformations having low weight and
vice-versa for ‘strong’.

Now consider a polymer which has a relatively large weight. This is ‘enriched’
in the following way. We create two members of this polymer at the next step
(i.e. when adding the next bead) and give them each a weight which is half of the
weight of their ‘parent’. This causes the total weight of this conformation in the



346 The Monte Carlo method

population to be constant. Suppose we have an upper limit (called ‘UpLim’) of the
weight above which polymers are enriched. The recursive code would then contain
the following lines:

IF (PolWeight>UpLim) THEN
NewWeight = 0.5*PolWeight;
AddBead(Polymer, NewWeight, L+1);
NewWeight = 0.5*PolWeight;
AddBead(Polymer, NewWeight, L+1);

END IF

This does precisely what we want. Note the copy we have made of PolWeight
into NewWeight. This is necessary when the call to AddBead would change its
PolWeight variable on exit; this depends on the type of call and on the possibilities
offered by the computer language.

Next we consider pruning. This means we must remove weak members from
the population, but we are not allowed to change the distribution. This is realised
by removing weak polymers with probability 1/2, and multiplying the weight of
those who happen to be not removed by a factor of 2. The criterion for removal
is determined by a lowest weight LowLim. This is done in the following piece of
code:

IF (PolWeight<LowLim) THEN
Choose random number R uniformly between 0 and 1;
IF (R<0.5) THEN

NewWeight = 2*PolWeight;
AddBead(Polymer, NewWeight, L+1);

END IF;
END IF

The choice of UpLim and LowLim determine whether the population will grow,
shrink or remain stationary. The right choice depends on the average weight
‘AvWeight’ at step L of the procedure. This average is updated for every new
polymer reaching this length. UpLim and LowLim are then taken as multiples of
the ratio of this average weight and the weight ‘Weight3’ at the shortest length (3
beads):

UpLim=α∗AvWeight/Weight3. (10.53)

and similar for LowLim. A good value for α for UpLim is 2, for LowLim we
take 1.2. The values of α may depend on the level L. It is possible to remove this
dependence by multiplying the polymer weight by a constant at each addition step.
In this example that constant should be near 1/(0.75Nθ), where Nθ is the number
of choices for the angle θ (6 in the example).
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– Programming exercise –

You can now try to code the PERM algorithm. If you have done it correctly you
should be able to reproduce the double crosses in Figure 10.3. As you can see,
they fall on top of the theoretical fit which has ν= 3/4.

It should be mentioned that there exist many more methods than described in this
subsection. In particular we mention the configurational bias Monte Carlo (CBMC)
method by.43

10.6.2 Tempering and replica exchange

If we want to simulate a disordered system at low temperatures, we run into the
problem that many low-energy states exist. Once the system finds itself in phase
space near such a low-energy state, it can escape only with great difficulty: the
system is trapped. In order to sample the phase space, we must visit a large set of
minima accessible at the relevant temperature, and therefore we should somehow
‘push’ the system over the barriers separating the minima. The problem which
arises is that pushing the system over the barrier is likely to destroy the detailed
balance condition. Methods preserving detailed balance and moving the system
efficiently through phase space are the simulated tempering Monte Carlo,44 the
replica Monte Carlo45, 46 and the replica exchange47 method. All these methods
are based on the idea that the system can move from one minimum to another by
repetitive heating and cooling. The problem is to heat and cool efficiently such
that moves to different temperatures have a reasonable acceptance probability and
that overall detailed balance is preserved. We briefly describe the replica exchange
method in this section.

M replicas of the system under consideration are simulated in parallel, each a
different (inverse) temperature β1,β2, . . . ,βM . We take β1 <β2 < . . . <βM . We now
alternate a number of ordinary MC steps for each of the replicas by an exchange of
the replica configurations, or, equivalently, of the replica temperatures. Exchanging
the temperatures just involves assigning different numbers to the temperatures in
the two replicas but the temperatures are then no longer ordered. Exchanging the
configurations will be more time-consuming.

The partition function describing the collection of replicas is given as

Z =
M
�

m=1

Z (βm) = Z (β1)Z (β2) . . . Z (βM ). (10.54)
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This can also be written as

Z =
�

Xm ;m=1,...,M

exp(−
M
�

m=1

βmEXm
), (10.55)

where Xm denotes a system configuration of replica m). We can interpret this
partition function as that of a large system, encompassing all replicas, with a
‘Boltzmann factor’

P (β1, X1; . . . ;βM , XM ) = exp

�

−
M
�

m=1

βmEXm

�

. (10.56)

Note that the βm are stochastic variables in this formulation. They can exchange
their values but are subject to the condition that the set of values taken on by the
βm remains the same. For this ensemble we perform a Metropolis Monte Carlo
algorithm. Suppose we let the replicas evolve indepently according to the standard
Metropolis algorithm. Then obviously detailed balance is satisfied. After a number
of steps however we exchange the configurations (or the temperatures) pairwise
according to

βn , Xn ;βm , Xm →βn , Xm ;βm , Xn . (10.57)

This means that a low-temperature replica receives a high(er) temperature
configuration. At higher temperatures, in particular above the phase transition
temperature, the system moves easily over all the free energy barriers in phase
space. If the low-temperature replicas move to such high temperatures and back,
their configuration will in general have moved to different (free) energy minima.

We calculate the expectation values of physical quantities A at any of the
temperatures by averaging over all replica configurations at that particular
temperature (perhaps omitting the first few MCS just after a temperature change).
Note that exchanges are performed only between adjacent temperatures (βm

and βm+1 if the temperatures are ordered), as the acceptance rate decreases
exponentially with temperature difference.

Let us calculate the transition probability for temperature exchange. The ratio
between a forward- and backward move is given by

T (βn , Xn ;βm , Xm →βn , Xm ;βm , Xn)

T (βn , Xm ;βm , Xn →βn , Xn ;βm , Xm)
= exp

�

−βm

�

EXn
−EXm

�

−βn

�

EXn
−EXm

��

=

exp
�

−
�

βm −βn

��

EXn
−EXm

��

. (10.58)

This implies that a trial step in which the temperatures are exchanged, is accepted
with a probability min

�

1,exp
�

−
�

βm −βn

��

EXn
−EXm

���

.
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For the method to be successful it is necessary that all Metropolis steps have
a reasonable acceptance. It is clear that the acceptance rate is sensitive to the
difference between adjacent temperatures. For the acceptance rates to be of order
1, the exponent

−
�

βm −βn

��

EXn
−EXm

�

(10.59)

should be of order 1. Note that before the exchange, EXn
will be close to the

equilibrium energy at temperature βn , and similarly for EXm
. This implies that

their difference will be approximately

EXn
−EXm

≈C
�

βm −βn

�

, (10.60)

where C is the (total) specific heat, evaluated near the temperatures βm and βn [we
assume that C (β) does not vary too strongly between both temperatures – note that
this is not justified if the temperatures are close to a critical phase transition]. We
see that for the acceptance rate to be of order 1, we should have

Δ≡
�

βm −βn

��

EXn
−EXm

�

≈C
�

βm −βn

�2 =O (1). (10.61)

From the fact that the total specific heat is an extensive quantity, we see that

βm −βn ∼ 1
�

N
. (10.62)

In practice, the set of β values is determined dynamically, such as to make the
acceptance rate approximately constant. This is done as follows. We start with
a set of temperatures

�

βn

�

. For these we perform a number of MCS and replica
exchanges. The acceptance rates pm for temperature βm are stored and then the
latter are updated according to the recipe:

βnew
1 =β1;

βnew
m =βnew

m−1 +
�

βm −βm−1

� pm

ptarget
,

where ptarget is the ‘target’ acceptance rate which is taken equal for all temperatures.
In this way we ensure that the replicas will cycle through all temperatures.

This method has been applied very successfully to spin-glasses and many other
examples. For a review, see Ref. 48.

10.6.3 Walking in a rough landscape

In everyday life, we often encounter the problem of finding the optimum solution
to a problem among many candidate solutions. An example is the well-known
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‘travelling salesperson problem’ (TSP) which consists of finding the shortest path
connecting a set of cities to be visited by a salesperson. This problem is related to
design problems in electronic circuits, where the wiring must be done as efficiently
as possible. The TSP is an example of so-called combinatorial optimisation
problems, as the aim is to find the optimum among all permutations of the cities.
Another type of problems is formulated in a continuum phase space. An example
is finding the minimum-energy conformation of a polymer. In particular, the
problem of protein folding has received much attention. Although the equilibrium
conformations of a protein are usually determined by the minimum of the free
energy, in many approaches it is a (sometimes phenomenological) potential energy
which is to be minimised.

The problems described here have something in common: it is possible to find
many good solutions, but there is only one, or at most a few optimal ones. To
define the problem, we should first specify what makes a solution the ‘best’. This is
done by assigning to each possible candidate solution a ‘merit function’ (or ‘fitness
function’). In the case of the TSP, the merit function is the length of a path. In the
case of the polymer conformation it is the potential energy. The optimum solution
is defined as the one with the lowest value of the merit function (if the problem is
to find the maximum of some quantity we choose the negative of that quantity to
be the merit function).

Now we can define the problems in a more abstract way. It is convenient to
consider continuum problems. The candidate solutions (for example the possible
conformations) form a phase space, and the merit function has some complicated
shape on that space – it contains many valleys and mountains, which can be very
steep. The solution we seek corresponds to the lowest valley in the landscape.
Note that the landscape is high-dimensional. You may think, naively, that a
standard numerical minimum finder can solve this problem for you. However,
this is not the case as such an algorithm always needs a starting point, from
which it finds the nearest local minimum, which is not necessarily the best you
can find in the conformation space. The set of points which [see Section A.4]
would go to one particular local minimum when fed into a steepest descent or other
minimum-finder, is called the basin of attraction of that minimum. Once we are
in the basin of attraction of the global minimum we can easily find this global
minimum; the problem is to find its basin of attraction.

There exist many methods for dealing with this problem. In this section we
review a few of these only briefly. One method is to generate configurations at
random or on a regular grid in the (high-dimensional) phase space, and then finding
the nearest local minima for all these point using a standard function minimisation
such as the conjugate gradient method [see Section A.4]. It is however possible
to have the simulation let the system probe preferentially those regions where the
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energy is low. Many of these approaches are based on the ideas presented earlier
in this chapter. Note that we simply want to find a (near)-global minimum of the
merit function – detailed balance is no longer a concern.

Suppose that you were to find the minimum energy of a polymer studied in the
previous subsection. You could have generated a low-temperature ensemble and
then for each conformation you encounter, find the nearest local minimum. This
has been done by Grassberger for polymer chains consisting of two different types
of beads.49 This method is closely related to simulated annealing50 which is a
special version of the Metropolis algorithm. In simulated annealing, the merit
function is viewed as an energy. Applying the standard Metropolis ensemble,
we would generate configurations distributed according to the Boltzmann factor
exp[−E/(kBT )]. In simulated annealing, we slowly cool the system down. The
idea behind this is that at higher temperatures, the system can easily hop over the
barriers, thereby probing a large part of the phase space. Cooling the system down,
it samples only the lower energy domains and finally ends up in one of the deepest
valleys. It is obviously efficient to use various samples of the system, so that in
fact a population of systems is cooled down and we finally take the one which has
reached the lowest energy. Alternatively, one could heat up the system again and
then anneal it once more and so on. It is always advisable in these simulations
to combine the stochastic algorithm with a deterministic minimum finder such as
the conjugate gradient method, in order to efficiently find the deepest point of an
attraction basin from each point visited.

The idea behind these method is called ‘configurational search’ for obvious
reasons. Another concept in this field is ‘energy sculpting’. This trick tries
to overcome the difficulty that a method which focuses on the low-energy parts
of the phase space, will automatically avoid the (sometimes) high (free) energy
barriers separating the different energy minima. This is done by replacing the
energy (i.e. the merit function) by a modified one. An extreme version of this
is the basin hopping method51 by Doye and Wales which was used to find optimal
conformations of Lennard–Jones clusters. In this method, the energy of a point is
replaced by the energy minimum of the attraction basin the point is in. This implies
that all points in an attraction basin have the same (modified) energy. The energy
steps up or down when moving from one attraction basin to another – the barriers
between the basins are entirely removed.

Finally, another method deserves mention: the genetic algorithm (GA).52, 53 This
algorithm is inspired by the ideas of evolution theory and employs these to find
optimal solutions to combinatorial or continuous problems. These algorithms are
based on encoding any point in phase space into a linear chain. This can be a binary
chain. For example, let us suppose that our merit function f depends on N variables
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x j :
f = f (x1, . . . , xN ). (10.63)

We restrict the range of acceptable values x j to some finite interval. Within this
interval, we allow for a number (256 or 512, say) of different equidistant values.
These values can be coded as a bit-string. It also possible to run the algorithm with
the string of reals x1, . . . , xN . The algorithm now manipulates a population of such
strings. We start with a pool of M individuals. Then we do the following steps.

WHILE No acceptable solution found DO
Calculate fitness (merit function) of all individuals;
Enrich the fit ones by letting them create identical clones;
Weed out the individuals with low fitness;
Mate randomly chosen pairs of the population and

and have them create offspring;
Mutate;

END WHILE.

The enrichment through cloning and the weeding of low-fitness individuals is
carried out along the same lines as the PERM algorithm discussed above. The
size of the population should remain more or less constant in this process. Mating
is a process in which the two members of a pair of chains are cut into two pieces at
some randomly chosen chain position. The left piece cut off from chain 1 is then
connected to the right part of chain 2 and vice versa.

Mutation is a process in which one of the bits is chosen at random and then
flipped. This is necessary to keep variety in the population. The necessity for this
is seen by considering the case in which some segment is the same in all chains.
This segment would always remain the same in all steps exept when mutation takes
place. This interesting method has been used for a large variety of problems.52

*10.7 The temperature of a finite system

We conclude this chapter with an intriguing aspect of the simulation of finite
systems. In molecular dynamics, the microcanonical ensemble is the ‘default
ensemble’, as the solution of the equations of motion leaves the total mechanical
energy constant. On the other hand, in Monte Carlo, the Metropolis algorithm
naturally leads to the canonical ensemble. We know from equilibrium statistical
mechanics that the different ensembles are ‘equivalent’, which means that physical
quantities evaluated with the same values of the thermodynamic quantities in
different ensembles are the same up to corrections of order 1/N . For finite
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systems, the two can therefore not be compared to very high accuracy. However,
with a careful analysis of the proper definitions of the temperature, we can make
comparisons between the two as we shall now show.

Traditionally, the temperature in microcanonical molecular dynamics is
calculated from the equipartition theorem. There is however a subtlety in that the
number of degrees of freedom for an N -particle system is not 3N , but 3N−3, where
the three degrees of freedom of the centre of mass must be subtracted as they are
fixed in the molecular dynamics algorithm – only the internal momenta contribute
to the temperature. This procedure thus leads to the expression

kBT = 2
〈K 〉

3N −3
(10.64)

for the temperature (K is the total kinetic energy). Although this expression is
widely used, it is not correct within the microcanonical ensemble if we use the
thermodynamic definition of temperature

1

T
=
�

∂S

∂E

�

N ,V

. (10.65)

where S = kB lnΩ, together with standard expression for Ω:

Ω= kB ln

�

�

all states
δ(E −Hstate)

�

, (10.66)

where Hstate is the Hamiltonian of the system.
For a system of N particles in three dimensions, taking into account that the total

momentum is conserved, this leads to

Ω= 1

h3N−3N !

�

δ [E −H(P,R)] d 3N−3P d 3N R. (10.67)

Note however, that other expressions for the entropy can also be used.54 Working
out the derivative of this entropy with respect to the energy as prescribed by (10.65)
does not seem very easy, but it can be done when we first use the explicit quadratic
expression for the kinetic energy in the expression for the entropy:

Ω= 1

h3N−3N !

�

δ

�

E − P 2

2m
−V (R)

�

d 3N−3P d 3N R. (10.68)

Now we write d 3N−3P = ω(3N −3)p3N−4 d p where p = |P | and ω(3N −3) is the
surface of a hypersphere in 3N − 3 dimensions. Furthermore, substituting K =
p2/(2m), the integral becomes

Ω= 1

h3N−3N !

�

δ [E −K −V (R)]ω(3N −3)(2mK )(3N−3)/2 dK

2K
d 3N R. (10.69)
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Working out the delta function then leads to

Ω= ω(3N −3)

h3N−3N !

�

[2m(E −V )](3N−5)/2 d 3N R. (10.70)

Taking the derivative of S = kB lnΩ with respect to energy then leads to the
following expression for the temperature:

1

kBT
= 1

kB

∂S

∂E
= 3N −5

2

�

(E −V )(3N−7)/2d 3N R
�

(E −V )(3N−5)/2d 3N R
=

3N −5

2

�

1

E −V

�

= 3N −5

2

�

1

K

�

. (10.71)

The difference between this expression for the temperature and that obtained
from the equipartition theorem is of the order of 1/N , so it is not obvious why
people bother about subtracting the 3 from the total number of degrees of freedom
when the adopted convention is already off of the same order. However, the good
reason for sticking to this convention is that it is adopted in most of the MD codes.

We now consider the question how properties obtained in, say, the canonical
ensemble, compare with those obtained in the microcanonical ensemble. When
we calculate the expectation value of some physical property in one ensemble
for particular values of the system parameters, we can measure the expectation
values of the variables conjugate to the system parameters and then evaluate the
expectation value of the property at hand in any other ensemble. As we have already
noted in the beginning of this section, the differences between values obtained in
different ensembles will of the order of 1/N . To be specific, we may perform a
molecular dynamics simulation in the microcanonical ensemble at some energy E∗

and calculate some configurational average. If on the other hand we calculate the
same configurational average in a canonical Monte Carlo simulation, we should
find differences of order 1/N . We shall now show that it is possible to calculate
this difference analytically if the quantity under consideration is the total energy.

The expectation value of the total energy in the canonical ensemble is

〈E〉=
�

states i Ei e−βEi

�

states i e−βEi
. (10.72)

The sum can be rewritten when we collect terms with the same energy. According
to the definition of entropy we have exp[S(E)/kB] states at energy E :

〈E〉=
�

Ee−βE+S(E)/kB dE
�

e−βE+S(E)/kB dE
. (10.73)
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We can approximate the term ρ(E) = exp[−βE +S(E)/kB] as follows:

ρ(E ) = exp

�

−βE∗+S(E∗)/kB + ΔE 2

2kB

∂2S(E∗)

∂E 2
+ΔE

∂S(E∗)

∂E
+ ΔE 3

6kB

∂3S(E∗)

∂E 3

�

.

(10.74)
This a Taylor expansion of the exponent around its maximum E∗ which satisfies

β= 1

kB

∂S(E∗)

∂E
. (10.75)

We now introduce the two parameters

α= 1

kB

∂2S(E∗)

∂E 2
; γ= 1

kB

∂3S(E∗)

∂E 3
. (10.76)

The expectation value of the energy can be evaluated straightforwardly in terms of
these parameters:

〈E〉=
�∞
−∞ e−αΔE 2 �

1+γΔE 3
�

(E∗+ΔE) dΔE
�∞
−∞ e−αΔE 2

�

1+γΔE 3
�

dΔE
. (10.77)

The leading term is simply E∗. Realising that only even powers of ΔE survive in
the Gaussian integrals, we obtain for the correction

〈E〉= E∗+
�∞
−∞ e−αΔE 2

γΔE 4 dΔE
�∞
−∞ e−αΔE 2

dΔE
= E∗ − 3γ

4α2
. (10.78)

The derivatives α and γ can be determined in a way similar to that used to find
the temperature calculation above, with the results

α= 3N −5

4

�

(3N −7)

�

1

K 2

�

− (3N −5)

�

1

K

�2�

, (10.79)

and

γ= (3N −5)(3N −7)(3N −9)

8

�

1

K 3

�

−

3
(3N −5)2(3N −7)

8

�

1

K 2

��

1

K

�

+1
(3N −5)3

4

�

1

K

�3

. (10.80)

From the definitions (10.76) We see that α ∼ 1/N (which ensures the energy
fluctuations to be of order 1/

�
N ), whereas γ ∼ 1/N 2. Therefore, the relative

correction to the energy 3γ/(4α2) is still of order 1/N . This is significant when
N is not too large.
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Armed with these expressions it is possible to relate the microcanonical energy
E∗ to the canonical one. We now give results for a test run involving only 8
particles, as for this number the differences are very clear. Accurate simulations
for particles with Gaussian repulsion V (r ) = exp(−4r 2) have been performed. We
have used this potential because it smooth and does not suffer from the periodicity
(it decays rapidly). The kinetic energy K and the expectation values of 1/K , 1/K 2

and 1/K 3 are determined in a molecular dynamics simulation at constant energy in
order to calculate α and γ according to (10.79) and (10.80).

Using a target temperature (according to the equipartition theorem) of 1.0, a
(measured) temperature of 1.043 [using the correct definition (10.71)], and a total
energy of 10.913 ± 0.003 (in reduced units) have been found in our simulation.
This is the energy E∗. In the canonical ensemble, we should add the correction
3γ2/(4α2). Adding the correction, we obtain an energy of 11.94+0.03 in natural
units. An MC calculation with a temperature of 1.043 gives E = 11.96, in good
agreement with the prediction. Note that the statistical errors in α and γ are
difficult to calculate because the inverse powers of the kinetic energy are correlated
quantities. The best method is to calculate the correction from several independent
simulations and infer the error from these results, or by data blocking of the
correction over a long run (see Section 7.4). Note that in order to calculate the
canonical kinetic energy, K = 3(N −1)kBT /2 should be used rather than 3N kBT /2

in order to relate the energy to the molecular dynamics energy which has three
degrees of freedom less (in the canonical ensemble, the equipartition is satisfied
even for small particle numbers).

Obviously, the practical value of this calculation is limited – the main point is to
show that careful analysis is necessary and possible for systems consisting of small
numbers of particles (such as droplets).

Exercises

10.1 Consider a MC algorithm for the two-dimensional Ising model in which the
sites are scanned in lexicographic order, that is, each row is scanned from left
to right, starting with the top row and proceeding towards the bottom row. We
want to show that this method satisfies the detailed balance criterion. A sweep
through the entire lattice is considered as a single step in the Markov chain.

(a) Explain why this Markov chain is ergodic.

The proof that the transition probabilities satisfy detailed balance is done by
recursion. Suppose that the lattice contains N sites, and that for the lattice
containing N −1 sites the algorithm satisfies detailed balance.
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(b) Show that if the N -th spin is flipped according to the usual Metropolis
algorithm, the sweep over the lattice with N sites satisfies detailed balance.

10.2 [C] Code the heat-bath algorithm for the Ising model and analyse the
correlation time (see section 7.4), in particular close to the critical
temperature. Compare the results with the standard Metropolis algorithm.

10.3 Consider the Norman-Filinov method for a system with a large chemical
potential. From Eqs. (10.37) and (10.38) we see that in that case the
acceptance rate for creation is much smaller than that for annihilation.
Therefore we use a generalised Metropolis method, in which creations are
tried much more often than annihilations. Suppose the trial probabilities for
creation and annihilation are PC and PA respectively.
Show that the acceptances should be modified as follows:

• The acceptance probability for creation is

Pacc = min
�

1, qX X ′
�

with

qX X ′ = e−βΔU+
Λ

−3V /(N +1)eβµ
PA

PC
.

• Similarly for annihilation:

Pacc = min
�

1, qX X ′
�

with

qX X ′ = eβΔU−
Λ

3N /V e−βµ
PC

PA
.

Show that this modification can be implemented by a suitable shift in the
chemical potential. Find this shift.

10.4 [C] Consider the methane (CH4) molecule of problem 8.12. In that problem
we have given the potential energy of the molecule in terms of stretching and
bending terms.

Write a Monte Carlo simulation for simulating this molecule at a given
temperature. Compare the results with those obtained in problem 8.12.
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